1
GATE CSE 2007
+2
-0.6
Which one of these first-order logic formulae is valid?
A
$$\forall x\left( {P\left( x \right) \Rightarrow Q\left( x \right)} \right) \Rightarrow \left( {\left( {\forall xP\left( x \right)} \right) \Rightarrow \left( {\forall xQ\left( x \right)} \right)} \right)$$
B
$$\exists x\left( {P\left( x \right) \vee Q\left( x \right)} \right) \Rightarrow \left( {\left( {\exists xP\left( x \right)} \right) \Rightarrow \left( {\exists xQ\left( x \right)} \right)} \right)$$
C
$$\exists x\left( {P\left( x \right) \wedge Q\left( x \right)} \right) \Leftrightarrow \left( {\left( {\exists xP\left( x \right)} \right) \wedge \left( {\exists xQ\left( x \right)} \right)} \right)$$
D
$$\forall x\exists yP\left( {x,y} \right) \Rightarrow \exists y\forall xP\left( {x,y} \right)$$
2
GATE CSE 2006
+2
-0.6
Which one of the first order predicate calculus statements given below correctly expresses the following English statement?

Tigers and lion attack if they are hungry of threatened.

A
$$\forall x[(tiger(x) \wedge lion(x)) \to$$$$\{ (hungry(x) \vee threatened(x)) \to attacks(x)\} ]$$
B
$$\forall x[(tiger(x) \vee lion(x)) \to$$$$\{ (hungry(x) \wedge threatened(x)) \to attacks(x)\} ]$$
C
$$\forall x[(tiger(x) \vee lion(x)) \to$$$$\{ attacks(x) \to (hungry(x)) \vee threatened(x))\} ]$$
D
$$\forall x[(tiger(x) \vee lion(x)) \to$$$$\{ (hungry(x) \vee threatened(x)) \to attacks(x)\} ]$$
3
GATE CSE 2006
+2
-0.6
Consider the following propositional statements:

$${\rm P}1:\,\,\left( {\left( {A \wedge B} \right) \to C} \right) \equiv \left( {\left( {A \to C} \right) \wedge \left( {B \to C} \right)} \right)$$
$${\rm P}2:\,\,\left( {\left( {A \vee B} \right) \to C} \right) \equiv \left( {\left( {A \to C} \right) \vee \left( {B \to C} \right)} \right)$$ Which one of the following is true?

A
$$P1$$ is tautology, but not $$P2$$
B
$$P2$$ is tautology, but not $$P1$$
C
$$P1$$ and $$P2$$ are both tautologies
D
Both $$P1$$ and $$P2$$ are not tautologies
4
GATE CSE 2006
+2
-0.6
A logical binary relation $$\odot$$, is defined as follows: Let ~ be the unary negation (NOT) operator, with higher precedence then $$\odot$$. Which one of the following is equivalent to $$A \wedge B?$$

A
$$\left( { \sim A \odot B} \right)$$
B
$$\left( { \sim A \odot \sim B} \right)$$
C
$$\sim \left( { \sim A \odot \sim B} \right)$$
D
$$\sim \left( { \sim A \odot B} \right)$$
GATE CSE Subjects
Discrete Mathematics
Programming Languages
Theory of Computation
Operating Systems
Digital Logic
Computer Organization
Database Management System
Data Structures
Computer Networks
Algorithms
Compiler Design
Software Engineering
Web Technologies
General Aptitude
EXAM MAP
Joint Entrance Examination