1
GATE CSE 2006
MCQ (Single Correct Answer)
+2
-0.6
Consider the following first order logic formula in which $$R$$ is a binary relation symbol.
$$\forall x\forall y\left( {R\left( {x,\,y} \right) \Rightarrow R\left( {y,x} \right)} \right).$$

The formula is

A
Satisfiable and valid
B
Satisfiable and so is its negation
C
Unsatisfiable but its negation is valid
D
Satisfiable but its negation is unsatisfiable
2
GATE CSE 2006
MCQ (Single Correct Answer)
+2
-0.6
A logical binary relation $$ \odot $$, is defined as follows: GATE CSE 2006 Discrete Mathematics - Mathematical Logic Question 36 English

Let ~ be the unary negation (NOT) operator, with higher precedence then $$ \odot $$. Which one of the following is equivalent to $$A \wedge B?$$

A
$$\left( { \sim A \odot B} \right)$$
B
$$\left( { \sim A \odot \sim B} \right)$$
C
$$ \sim \left( { \sim A \odot \sim B} \right)$$
D
$$ \sim \left( { \sim A \odot B} \right)$$
3
GATE CSE 2006
MCQ (Single Correct Answer)
+2
-0.6
Consider the following propositional statements:


$${\rm P}1:\,\,\left( {\left( {A \wedge B} \right) \to C} \right) \equiv \left( {\left( {A \to C} \right) \wedge \left( {B \to C} \right)} \right)$$
$${\rm P}2:\,\,\left( {\left( {A \vee B} \right) \to C} \right) \equiv \left( {\left( {A \to C} \right) \vee \left( {B \to C} \right)} \right)$$ Which one of the following is true?

A
$$P1$$ is tautology, but not $$P2$$
B
$$P2$$ is tautology, but not $$P1$$
C
$$P1$$ and $$P2$$ are both tautologies
D
Both $$P1$$ and $$P2$$ are not tautologies
4
GATE CSE 2005
MCQ (Single Correct Answer)
+2
-0.6
Let $$P(x)$$ and $$Q(x)$$ be arbitrary predicates. Which of the following statement is always TRUE?
A
$$\left( {\forall x\left( {P\left( x \right) \vee Q\left( x \right)} \right)} \right) \Rightarrow \left( {\left( {\forall xP\left( x \right)} \right) \vee \left( {\forall xQ\left( x \right)} \right)} \right)$$
B
$$\left( {\forall x\left( {P\left( x \right) \Rightarrow Q\left( x \right)} \right)} \right) \Rightarrow \left( {\left( {\forall xP\left( x \right)} \right) \Rightarrow \left( {\forall xQ\left( x \right)} \right)} \right)$$
C
$$\left( {\left( {\forall x\left( {P\left( x \right)} \right) \Rightarrow \left( {\forall xQ\left( x \right)} \right)} \right) \Rightarrow \left( {\forall x\left( {P\left( x \right) \Rightarrow Q\left( x \right)} \right)} \right)} \right)$$
D
$$\left( {\left( {\forall x\left( {P\left( x \right)} \right)} \right)} \right) \Leftrightarrow \left( {\forall x\left( {Q\left( x \right)} \right)} \right) \Rightarrow \left( {\forall x\left( {P\left( x \right) \Leftrightarrow Q\left( x \right)} \right)} \right)$$
GATE CSE Subjects
Software Engineering
Web Technologies
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12