1
GATE CSE 2020
MCQ (Single Correct Answer)
+2
-0.67
Which one of the following predicate formulae is NOT logically valid?

Note that W is a predicate formula without any free occurrence of x.
A
$$\forall x$$(p(x) $$ \vee $$ W) $$ \equiv $$ $$\forall x$$ p(x) $$ \vee $$ W
B
$$\exists x$$(p(x) $$ \wedge $$ W) $$ \equiv $$ $$\exists x$$ p(x) $$ \wedge $$ W
C
$$\forall x$$(p(x) $$ \to $$ W) $$ \equiv $$ $$\forall x$$ p(x) $$ \to $$ W
D
$$\exists x$$(p(x) $$ \to $$ W) $$ \equiv $$ $$\exists x$$ p(x) $$ \to $$ W
2
GATE CSE 2019
MCQ (Single Correct Answer)
+2
-0.67
Consider the first order predicate formula φ:

∀x[(∀z z|x ⇒ ((z = x) ∨ (z = 1))) ⇒ ∃w (w > x) ∧ (∀z z|w ⇒ ((w = z) ∨ (z = 1)))]

Here 'a|b' denotes that 'a divides b', where a and b are integers.

Consider the following sets:

S1. {1, 2, 3, ..., 100}
S2. Set of all positive integers
S3. Set of all integers

Which of the above sets satisfy φ?
A
S1 and S3
B
S1, S2 and S3
C
S2 and S3
D
S1 and S2
3
GATE CSE 2018
MCQ (Single Correct Answer)
+2
-0.6
Consider the first-order logic sentence
$$\varphi \equiv \,\,\,\,\,\,\,\exists s\exists t\exists u\forall v\forall w$$ $$\forall x\forall y\psi \left( {s,t,u,v,w,x,y} \right)$$
where $$\psi $$ $$(𝑠,𝑡, 𝑢, 𝑣, 𝑤, 𝑥, 𝑦)$$ is a quantifier-free first-order logic formula using only predicate symbols, and possibly equality, but no function symbols. Suppose $$\varphi $$ has a model with a universe containing $$7$$ elements.

Which one of the following statements is necessarily true?

A
There exists at least one model of $$\varphi $$ with universe of size less than or equal to $$3.$$
B
There exists no model of $$\varphi $$ with universe of size less than or equal to $$3.$$
C
There exists no model of $$\varphi $$ with universe of size greater than $$7.$$
D
Every model of $$\varphi $$ has a universe of size equal to $$7.$$
4
GATE CSE 2016 Set 2
MCQ (Single Correct Answer)
+2
-0.6
Which one of the following well-formed formulae in predicate calculus is NOT valid?
A
$$\left( {\forall xp\left( x \right) \vee \forall xq\left( x \right)} \right) \Rightarrow \left( {\exists x\neg p\left( x \right) \vee \forall xq\left( x \right)} \right)$$
B
$$\left( {\exists xp\left( x \right) \vee \exists xq\left( x \right)} \right) \Rightarrow \exists x\left( {p\left( x \right) \vee q\left( x \right)} \right)$$
C
$$\exists x\left( {p\left( x \right) \wedge q\left( x \right)} \right) \Rightarrow \left( {\exists xp\left( x \right) \wedge \exists xq\left( x \right)} \right)$$
D
$$\forall x\left( {p\left( x \right) \vee q\left( x \right)} \right) \Rightarrow \left( {\forall xp\left( x \right) \vee \forall xq\left( x \right)} \right)$$
GATE CSE Subjects
Software Engineering
Web Technologies
EXAM MAP