1
GATE CSE 2014 Set 3
+2
-0.6
The CORRECT formula for the sentence, "not all rainy days are cold" is
A
$$\forall d\left( {Rainy\left( d \right) \wedge \sim Cold\left( d \right)} \right)$$
B
$$\forall d\left( { \sim Rainy\left( d \right) \to Cold\left( d \right)} \right)$$
C
$$\exists d\left( { \sim Rainy\left( d \right) \to Cold\left( d \right)} \right)$$
D
$$\exists d\left( {Rainy\left( d \right) \wedge \sim Cold\left( d \right)} \right)$$
2
GATE CSE 2014 Set 1
+2
-0.6
Which one of the following propositional logic formulas is TRUE when exactly two of $$p, q,$$ and $$r$$ are TRUE?
A
$$\left( {\left( {p \leftrightarrow q} \right) \wedge r} \right) \vee \left( {p \wedge q \wedge \sim r} \right)$$
B
$$\left( { \sim \left( {p \leftrightarrow q} \right) \wedge r} \right) \vee \left( {p \wedge q \wedge \sim r} \right)$$
C
$$\left( {\left( {p \to q} \right) \wedge r} \right) \vee \left( {p \wedge q \wedge \sim r} \right)$$
D
$$\left( { \sim \left( {p \leftrightarrow q} \right) \wedge r} \right) \wedge \left( {p \wedge q \wedge \sim r} \right)$$
3
GATE CSE 2013
+2
-0.6
What is the logical translation of the following statement?
"None of my friends are perfect."
A
$$\exists x\left( {F\left( x \right) \wedge \neg P\left( x \right)} \right)$$
B
$$\exists x\left( {\neg F\left( x \right) \wedge P\left( x \right)} \right)$$
C
$$\exists x\left( {\neg F\left( x \right) \wedge \neg P\left( x \right)} \right)$$
D
$$\neg \exists x\left( {F\left( x \right) \wedge P\left( x \right)} \right)$$
4
GATE CSE 2013
MCQ (More than One Correct Answer)
+2
-0.6
Which one of the following is NOT logically equivalent to $$\neg \exists x\left( {\forall y\left( \alpha \right) \wedge \left( {\forall z\left( \beta \right)} \right)} \right)?$$
A
$$\forall x\left( {\exists z\left( {\neg \beta } \right) \to \forall y\left( \alpha \right)} \right)$$
B
$$\forall x\left( {\forall z\left( \beta \right) \to \exists y\left( {\neg \alpha } \right)} \right)$$
C
$$\forall x\left( {\forall y\left( \alpha \right) \to \exists z\left( {\neg \beta } \right)} \right)$$
D
$$\forall x\left( {\exists y\left( {\neg \alpha } \right) \to \exists z\left( {\neg \beta } \right)} \right)$$
GATE CSE Subjects
EXAM MAP
Medical
NEETAIIMS