1
GATE CSE 2014 Set 3
MCQ (Single Correct Answer)
+2
-0.6
The CORRECT formula for the sentence, "not all rainy days are cold" is
A
$$\forall d\left( {Rainy\left( d \right) \wedge \sim Cold\left( d \right)} \right)$$
B
$$\forall d\left( { \sim Rainy\left( d \right) \to Cold\left( d \right)} \right)$$
C
$$\exists d\left( { \sim Rainy\left( d \right) \to Cold\left( d \right)} \right)$$
D
$$\exists d\left( {Rainy\left( d \right) \wedge \sim Cold\left( d \right)} \right)$$
2
GATE CSE 2014 Set 1
MCQ (Single Correct Answer)
+2
-0.6
Which one of the following propositional logic formulas is TRUE when exactly two of $$p, q,$$ and $$r$$ are TRUE?
A
$$\left( {\left( {p \leftrightarrow q} \right) \wedge r} \right) \vee \left( {p \wedge q \wedge \sim r} \right)$$
B
$$\left( { \sim \left( {p \leftrightarrow q} \right) \wedge r} \right) \vee \left( {p \wedge q \wedge \sim r} \right)$$
C
$$\left( {\left( {p \to q} \right) \wedge r} \right) \vee \left( {p \wedge q \wedge \sim r} \right)$$
D
$$\left( { \sim \left( {p \leftrightarrow q} \right) \wedge r} \right) \wedge \left( {p \wedge q \wedge \sim r} \right)$$
3
GATE CSE 2013
MCQ (Single Correct Answer)
+2
-0.6
What is the logical translation of the following statement?
"None of my friends are perfect."
A
$$\exists x\left( {F\left( x \right) \wedge \neg P\left( x \right)} \right)$$
B
$$\exists x\left( {\neg F\left( x \right) \wedge P\left( x \right)} \right)$$
C
$$\exists x\left( {\neg F\left( x \right) \wedge \neg P\left( x \right)} \right)$$
D
$$\neg \exists x\left( {F\left( x \right) \wedge P\left( x \right)} \right)$$
4
GATE CSE 2013
MCQ (More than One Correct Answer)
+2
-0.6
Which one of the following is NOT logically equivalent to $$\neg \exists x\left( {\forall y\left( \alpha \right) \wedge \left( {\forall z\left( \beta \right)} \right)} \right)?$$
A
$$\forall x\left( {\exists z\left( {\neg \beta } \right) \to \forall y\left( \alpha \right)} \right)$$
B
$$\forall x\left( {\forall z\left( \beta \right) \to \exists y\left( {\neg \alpha } \right)} \right)$$
C
$$\forall x\left( {\forall y\left( \alpha \right) \to \exists z\left( {\neg \beta } \right)} \right)$$
D
$$\forall x\left( {\exists y\left( {\neg \alpha } \right) \to \exists z\left( {\neg \beta } \right)} \right)$$
GATE CSE Subjects
Software Engineering
Web Technologies
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12