1
GATE CSE 2018
MCQ (Single Correct Answer)
+2
-0.6
Consider the first-order logic sentence
$$\varphi \equiv \,\,\,\,\,\,\,\exists s\exists t\exists u\forall v\forall w$$ $$\forall x\forall y\psi \left( {s,t,u,v,w,x,y} \right)$$
where $$\psi $$ $$(𝑠,𝑡, 𝑢, 𝑣, 𝑤, 𝑥, 𝑦)$$ is a quantifier-free first-order logic formula using only predicate symbols, and possibly equality, but no function symbols. Suppose $$\varphi $$ has a model with a universe containing $$7$$ elements.

Which one of the following statements is necessarily true?

A
There exists at least one model of $$\varphi $$ with universe of size less than or equal to $$3.$$
B
There exists no model of $$\varphi $$ with universe of size less than or equal to $$3.$$
C
There exists no model of $$\varphi $$ with universe of size greater than $$7.$$
D
Every model of $$\varphi $$ has a universe of size equal to $$7.$$
2
GATE CSE 2016 Set 2
MCQ (Single Correct Answer)
+2
-0.6
Which one of the following well-formed formulae in predicate calculus is NOT valid?
A
$$\left( {\forall xp\left( x \right) \vee \forall xq\left( x \right)} \right) \Rightarrow \left( {\exists x\neg p\left( x \right) \vee \forall xq\left( x \right)} \right)$$
B
$$\left( {\exists xp\left( x \right) \vee \exists xq\left( x \right)} \right) \Rightarrow \exists x\left( {p\left( x \right) \vee q\left( x \right)} \right)$$
C
$$\exists x\left( {p\left( x \right) \wedge q\left( x \right)} \right) \Rightarrow \left( {\exists xp\left( x \right) \wedge \exists xq\left( x \right)} \right)$$
D
$$\forall x\left( {p\left( x \right) \vee q\left( x \right)} \right) \Rightarrow \left( {\forall xp\left( x \right) \vee \forall xq\left( x \right)} \right)$$
3
GATE CSE 2015 Set 2
MCQ (Single Correct Answer)
+2
-0.6
Which one of the following well formed formulae is a tautology?
A
$$\forall x\,\exists y\,R\left( {x,y} \right) \leftrightarrow \exists y\forall x\,R\left( {x,y} \right)$$
B
$$\left( {\forall x\left[ {\exists y\,R\left( {x,y} \right) \to S\left( {x,y} \right)} \right]} \right) \to \forall x\exists y\,S\left( {x,y} \right)$$
C
$$\left[ {\forall x\,\exists y\,\left( {P\left( {x,y} \right)} \right. \to R\left( {x,y} \right)} \right] \leftrightarrow \left[ {\forall x\,\exists y\,\left( {\neg P\left( {x,y} \right)V\,R\left( {x,y} \right)} \right.} \right]$$
D
$$\forall x\,\forall y\,P\left( {x,y} \right) \to \forall x\forall y\,P\left( {y,x} \right)$$
4
GATE CSE 2014 Set 2
MCQ (Single Correct Answer)
+2
-0.6
Which one of the following Boolean expressions is NOT A tautology?
A
$$\left( {\left( {a \to b} \right) \wedge \left( {b \to c} \right)} \right) \to \left( {a \to c} \right)$$
B
$$\left( {a \leftrightarrow c} \right) \to \left( { \sim b \to \left( {a \wedge c} \right)} \right)$$
C
$$\left( {a \wedge b \wedge c} \right) \to \left( {c \vee a} \right)$$
D
$$A \to \left( {b \to a} \right)$$
GATE CSE Subjects
Software Engineering
Web Technologies
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
CBSE
Class 12