1
GATE CSE 2016 Set 2
MCQ (Single Correct Answer)
+2
-0.6
Which one of the following well-formed formulae in predicate calculus is NOT valid?
A
$$\left( {\forall xp\left( x \right) \vee \forall xq\left( x \right)} \right) \Rightarrow \left( {\exists x\neg p\left( x \right) \vee \forall xq\left( x \right)} \right)$$
B
$$\left( {\exists xp\left( x \right) \vee \exists xq\left( x \right)} \right) \Rightarrow \exists x\left( {p\left( x \right) \vee q\left( x \right)} \right)$$
C
$$\exists x\left( {p\left( x \right) \wedge q\left( x \right)} \right) \Rightarrow \left( {\exists xp\left( x \right) \wedge \exists xq\left( x \right)} \right)$$
D
$$\forall x\left( {p\left( x \right) \vee q\left( x \right)} \right) \Rightarrow \left( {\forall xp\left( x \right) \vee \forall xq\left( x \right)} \right)$$
2
GATE CSE 2015 Set 2
MCQ (Single Correct Answer)
+2
-0.6
Which one of the following well formed formulae is a tautology?
A
$$\forall x\,\exists y\,R\left( {x,y} \right) \leftrightarrow \exists y\forall x\,R\left( {x,y} \right)$$
B
$$\left( {\forall x\left[ {\exists y\,R\left( {x,y} \right) \to S\left( {x,y} \right)} \right]} \right) \to \forall x\exists y\,S\left( {x,y} \right)$$
C
$$\left[ {\forall x\,\exists y\,\left( {P\left( {x,y} \right)} \right. \to R\left( {x,y} \right)} \right] \leftrightarrow \left[ {\forall x\,\exists y\,\left( {\neg P\left( {x,y} \right)V\,R\left( {x,y} \right)} \right.} \right]$$
D
$$\forall x\,\forall y\,P\left( {x,y} \right) \to \forall x\forall y\,P\left( {y,x} \right)$$
3
GATE CSE 2014 Set 3
MCQ (Single Correct Answer)
+2
-0.6
The CORRECT formula for the sentence, "not all rainy days are cold" is
A
$$\forall d\left( {Rainy\left( d \right) \wedge \sim Cold\left( d \right)} \right)$$
B
$$\forall d\left( { \sim Rainy\left( d \right) \to Cold\left( d \right)} \right)$$
C
$$\exists d\left( { \sim Rainy\left( d \right) \to Cold\left( d \right)} \right)$$
D
$$\exists d\left( {Rainy\left( d \right) \wedge \sim Cold\left( d \right)} \right)$$
4
GATE CSE 2014 Set 2
MCQ (Single Correct Answer)
+2
-0.6
Which one of the following Boolean expressions is NOT A tautology?
A
$$\left( {\left( {a \to b} \right) \wedge \left( {b \to c} \right)} \right) \to \left( {a \to c} \right)$$
B
$$\left( {a \leftrightarrow c} \right) \to \left( { \sim b \to \left( {a \wedge c} \right)} \right)$$
C
$$\left( {a \wedge b \wedge c} \right) \to \left( {c \vee a} \right)$$
D
$$A \to \left( {b \to a} \right)$$
GATE CSE Subjects
Software Engineering
Web Technologies
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12