1
GATE CSE 2009
MCQ (Single Correct Answer)
+2
-0.6
The binary operation ◻ is defined as follows: GATE CSE 2009 Discrete Mathematics - Mathematical Logic Question 14 English

Which one of the following is equivalence to $$P \vee Q$$?

A
$$\neg \,Q$$ ◻ $$\neg \,P$$
B
$$P$$ ◻ $$\neg \,Q$$
C
$$\neg \,P$$ ◻ $$Q$$
D
$$\neg \,P$$ ◻ $$\neg \,Q$$
2
GATE CSE 2008
MCQ (Single Correct Answer)
+2
-0.6
Which of the following is the negation of $$$\left[ {\forall x,\alpha \to \left( {\exists y,\beta \to \left( {\forall u,\exists v,\gamma } \right)} \right)} \right]?$$$
A
$$\left[ {\exists x,\alpha \to \left( {\forall y,\beta \to \left( {\exists u,\forall v,\gamma } \right)} \right)} \right]$$
B
$$\left[ {\exists x,\alpha \to \left( {\forall y,\beta \to \left( {\exists u,\forall v,\neg \gamma } \right)} \right)} \right]$$
C
$$\left[ {\forall x,\neg \alpha \to \left( {\exists y,\neg \beta \to \left( {\forall u,\exists v,\neg \gamma } \right)} \right)} \right]$$
D
$$\left[ {\exists x,\alpha \wedge \left( {\forall y,\beta \wedge \left( {\exists u,\forall v,\neg \gamma } \right)} \right)} \right]$$
3
GATE CSE 2008
MCQ (Single Correct Answer)
+2
-0.6
$$P$$ and $$Q$$ are two propositions. Which of the following logical expressions are equivalent?

$${\rm I}.$$ $${\rm P}\, \vee \sim Q$$
$${\rm I}{\rm I}.$$ $$ \sim \left( { \sim {\rm P} \wedge Q} \right)$$
$${\rm I}{\rm I}{\rm I}.$$ $$\left( {{\rm P} \wedge Q} \right) \vee \left( {{\rm P} \wedge \sim Q} \right) \vee \left( { \sim {\rm P} \wedge \sim Q} \right)$$
$${\rm I}V.$$ $$\left( {{\rm P} \wedge Q} \right) \vee \left( {{\rm P} \wedge \sim Q} \right) \vee \left( { \sim {\rm P} \wedge Q} \right)$$

A
Only $${\rm I}$$ and $${\rm I}$$$${\rm I}$$
B
Only $${\rm I}$$, $${\rm I}$$$${\rm I}$$ and $${\rm I}$$$${\rm I}$$$${\rm I}$$
C
Only $${\rm I}$$, $${\rm I}$$$${\rm I}$$ and $${\rm I}$$$$V$$
D
All of $${\rm I}$$, $${\rm I}$$$${\rm I}$$, $${\rm I}$$$${\rm I}$$$${\rm I}$$ and $${\rm I}$$$$V$$
4
GATE CSE 2008
MCQ (Single Correct Answer)
+2
-0.6
Let fsa and $$pda$$ be two predicates such that fsa$$(x)$$ means $$x$$ is a finite state automation, and pda$$(y)$$ means that $$y$$ is a pushdown automation. Let $$equivalent$$ be another predicate such that $$equivalent$$$$(a,b)$$ means $$a$$ and $$b$$ are equivalent. Which of the following first order logic statements represents the following:

Each finite state automation has an equivalent pushdown automation.

A
$$\left( {\forall x\,\,fsa\left( x \right)} \right) \Rightarrow \left( {\exists y\,\,pda\left( y \right) \wedge \,equivalent\,\,\left( {x,\,y} \right)} \right)$$
B
$$ \sim \forall y\left( {\exists x\,\,fsa\left( x \right) \Rightarrow pda\left( y \right) \wedge \,equivalent\left( {x,\,y} \right)} \right)$$
C
$$\forall x\,\exists y\left( {fsa\left( x \right) \wedge pda\left( y \right) \wedge \,equivalent\left( {x,\,y} \right)} \right)$$
D
$$\forall x\,\exists y\left( {fsa\left( y \right) \wedge pda\left( x \right) \wedge \,equivalent\left( {x,\,y} \right)} \right)$$
GATE CSE Subjects
Software Engineering
Web Technologies
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12