1
GATE CSE 2009
MCQ (Single Correct Answer)
+2
-0.6
The binary operation ◻ is defined as follows: GATE CSE 2009 Discrete Mathematics - Mathematical Logic Question 14 English

Which one of the following is equivalence to $$P \vee Q$$?

A
$$\neg \,Q$$ ◻ $$\neg \,P$$
B
$$P$$ ◻ $$\neg \,Q$$
C
$$\neg \,P$$ ◻ $$Q$$
D
$$\neg \,P$$ ◻ $$\neg \,Q$$
2
GATE CSE 2009
MCQ (Single Correct Answer)
+2
-0.6
Which one of the following is the most appropriate logical formula to represent the statement:

"$$Gold\,and\,silver\,ornaments\,are\,precious$$"

The following notations are used:
$$G\left( x \right):\,\,x$$ is a gold ornament.
$$S\left( x \right):\,\,x$$ is a silver ornament.
$$P\left( x \right):\,\,x$$ is precious.

A
$$\forall x\left( {P\left( x \right) \to \left( {G\left( x \right) \wedge S\left( x \right)} \right)} \right)$$
B
$$\forall x\left( {\left( {G\left( x \right) \wedge S\left( x \right)} \right) \to P\left( x \right)} \right)$$
C
$$\exists x\left( {\left( {G\left( x \right) \wedge S\left( x \right)} \right) \to P\left( x \right)} \right)$$
D
$$\forall x\left( {\left( {G\left( x \right) \vee S\left( x \right)} \right) \to P\left( x \right)} \right)$$
3
GATE CSE 2009
MCQ (Single Correct Answer)
+2
-0.6
Consider the following well-formed formulae:

$${\rm I}.$$ $$\,\,\neg \forall x\left( {P\left( x \right)} \right)$$
$${\rm I}{\rm I}.\,\,\,\,\,\,\neg \exists x\left( {P\left( x \right)} \right)$$
$${\rm I}{\rm I}{\rm I}.\,\,\,\,\,\,\neg \exists x\left( {\neg P\left( x \right)} \right)$$
$${\rm I}V.\,\,\,\,\,\,\exists x\left( {\neg P\left( x \right)} \right)$$

Which of the above are equivalent?

A
$${\rm I}$$ and $${\rm I}$$$${\rm I}$$
B
$${\rm I}$$ and $${\rm I}$$$$V$$
C
$${\rm I}$$$${\rm I}$$ and $${\rm I}$$$${\rm I}$$$${\rm I}$$
D
$${\rm I}$$$${\rm I}$$ and $${\rm I}$$$$V$$
4
GATE CSE 2008
MCQ (Single Correct Answer)
+2
-0.6
Which of the following is the negation of $$$\left[ {\forall x,\alpha \to \left( {\exists y,\beta \to \left( {\forall u,\exists v,\gamma } \right)} \right)} \right]?$$$
A
$$\left[ {\exists x,\alpha \to \left( {\forall y,\beta \to \left( {\exists u,\forall v,\gamma } \right)} \right)} \right]$$
B
$$\left[ {\exists x,\alpha \to \left( {\forall y,\beta \to \left( {\exists u,\forall v,\neg \gamma } \right)} \right)} \right]$$
C
$$\left[ {\forall x,\neg \alpha \to \left( {\exists y,\neg \beta \to \left( {\forall u,\exists v,\neg \gamma } \right)} \right)} \right]$$
D
$$\left[ {\exists x,\alpha \wedge \left( {\forall y,\beta \wedge \left( {\exists u,\forall v,\neg \gamma } \right)} \right)} \right]$$
GATE CSE Subjects
Software Engineering
Web Technologies
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12