1
GATE CSE 2009
MCQ (Single Correct Answer)
+2
-0.6
The binary operation ◻ is defined as follows: GATE CSE 2009 Discrete Mathematics - Mathematical Logic Question 18 English

Which one of the following is equivalence to $$P \vee Q$$?

A
$$\neg \,Q$$ ◻ $$\neg \,P$$
B
$$P$$ ◻ $$\neg \,Q$$
C
$$\neg \,P$$ ◻ $$Q$$
D
$$\neg \,P$$ ◻ $$\neg \,Q$$
2
GATE CSE 2009
MCQ (Single Correct Answer)
+2
-0.6
Which one of the following is the most appropriate logical formula to represent the statement:

"$$Gold\,and\,silver\,ornaments\,are\,precious$$"

The following notations are used:
$$G\left( x \right):\,\,x$$ is a gold ornament.
$$S\left( x \right):\,\,x$$ is a silver ornament.
$$P\left( x \right):\,\,x$$ is precious.

A
$$\forall x\left( {P\left( x \right) \to \left( {G\left( x \right) \wedge S\left( x \right)} \right)} \right)$$
B
$$\forall x\left( {\left( {G\left( x \right) \wedge S\left( x \right)} \right) \to P\left( x \right)} \right)$$
C
$$\exists x\left( {\left( {G\left( x \right) \wedge S\left( x \right)} \right) \to P\left( x \right)} \right)$$
D
$$\forall x\left( {\left( {G\left( x \right) \vee S\left( x \right)} \right) \to P\left( x \right)} \right)$$
3
GATE CSE 2009
MCQ (Single Correct Answer)
+2
-0.6
Consider the following well-formed formulae:

$${\rm I}.$$ $$\,\,\neg \forall x\left( {P\left( x \right)} \right)$$
$${\rm I}{\rm I}.\,\,\,\,\,\,\neg \exists x\left( {P\left( x \right)} \right)$$
$${\rm I}{\rm I}{\rm I}.\,\,\,\,\,\,\neg \exists x\left( {\neg P\left( x \right)} \right)$$
$${\rm I}V.\,\,\,\,\,\,\exists x\left( {\neg P\left( x \right)} \right)$$

Which of the above are equivalent?

A
$${\rm I}$$ and $${\rm I}$$$${\rm I}$$
B
$${\rm I}$$ and $${\rm I}$$$$V$$
C
$${\rm I}$$$${\rm I}$$ and $${\rm I}$$$${\rm I}$$$${\rm I}$$
D
$${\rm I}$$$${\rm I}$$ and $${\rm I}$$$$V$$
4
GATE CSE 2008
MCQ (Single Correct Answer)
+2
-0.6
$$P$$ and $$Q$$ are two propositions. Which of the following logical expressions are equivalent?

$${\rm I}.$$ $${\rm P}\, \vee \sim Q$$
$${\rm I}{\rm I}.$$ $$ \sim \left( { \sim {\rm P} \wedge Q} \right)$$
$${\rm I}{\rm I}{\rm I}.$$ $$\left( {{\rm P} \wedge Q} \right) \vee \left( {{\rm P} \wedge \sim Q} \right) \vee \left( { \sim {\rm P} \wedge \sim Q} \right)$$
$${\rm I}V.$$ $$\left( {{\rm P} \wedge Q} \right) \vee \left( {{\rm P} \wedge \sim Q} \right) \vee \left( { \sim {\rm P} \wedge Q} \right)$$

A
Only $${\rm I}$$ and $${\rm I}$$$${\rm I}$$
B
Only $${\rm I}$$, $${\rm I}$$$${\rm I}$$ and $${\rm I}$$$${\rm I}$$$${\rm I}$$
C
Only $${\rm I}$$, $${\rm I}$$$${\rm I}$$ and $${\rm I}$$$$V$$
D
All of $${\rm I}$$, $${\rm I}$$$${\rm I}$$, $${\rm I}$$$${\rm I}$$$${\rm I}$$ and $${\rm I}$$$$V$$
GATE CSE Subjects
Software Engineering
Web Technologies
EXAM MAP