1
GATE CSE 1996
MCQ (Single Correct Answer)
+2
-0.6
Which one of the following is false? Read $$ \wedge $$ as AND, $$ \vee $$ as OR, $$ \sim $$ as NOT, $$ \to $$ as one way implication and $$ \leftrightarrow $$ two way implication.
A
$$\left( {\left( {x \to y} \right) \wedge x} \right) \to y$$
B
$$\left( {\left( { \sim x \to y} \right) \wedge \left( { \sim x \to \sim y} \right)} \right) \to x$$
C
$$\left( {x \to \left( {x \vee y} \right)} \right)$$
D
$$\left( {\left( {x \vee y} \right) \leftrightarrow \left( { \sim x \to \sim y} \right)} \right)$$
2
GATE CSE 1995
MCQ (Single Correct Answer)
+2
-0.6
If the proposition $$\neg p \Rightarrow q$$ is true, then the truth value of the proposition $$\neg p \vee \left( {p \Rightarrow q} \right)$$ where $$'\neg '$$ is negation, $$' \vee '$$ is inclusive or and $$' \Rightarrow '$$ is implication, is
A
true
B
multiple-valued
C
false
D
cannot be determined
3
GATE CSE 1994
True or False
+2
-0
Let $$p$$ and $$q$$ be propositions. Using only the truth table decide whether $$p \Leftrightarrow q$$ does not imply $$p \to \sim q$$ is true or false.
A
TRUE
B
FALSE
4
GATE CSE 1990
MCQ (Single Correct Answer)
+2
-0.6
Indicate which of the following well-formed formula are valid:
A
$$\left( {\left( {{\rm P} \Rightarrow Q} \right) \wedge \left( {Q \Rightarrow R} \right)} \right) \Rightarrow \left( {{\rm P} \Rightarrow R} \right).$$
B
$$\left( {{\rm P} \Rightarrow Q} \right) \Rightarrow \left( { \sim P \Rightarrow \sim Q} \right)$$
C
$$\left( {{\rm P}\, \wedge \,\left( { \sim {\rm P}\,\,V \sim Q} \right)} \right) \Rightarrow Q\left( { \sim {\rm P} \Rightarrow \sim Q} \right)$$
D
$$\left( {\left( {{\rm P} \Rightarrow R} \right) \vee \left( {Q \Rightarrow R} \right)} \right) \Rightarrow \left( {\left( {\left( {{\rm P} \vee Q} \right) \Rightarrow R} \right)} \right)$$
GATE CSE Subjects
Software Engineering
Web Technologies
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
CBSE
Class 12