1
GATE CSE 1996
+2
-0.6
Which one of the following is false? Read $$\wedge$$ as AND, $$\vee$$ as OR, $$\sim$$ as NOT, $$\to$$ as one way implication and $$\leftrightarrow$$ two way implication.
A
$$\left( {\left( {x \to y} \right) \wedge x} \right) \to y$$
B
$$\left( {\left( { \sim x \to y} \right) \wedge \left( { \sim x \to \sim y} \right)} \right) \to x$$
C
$$\left( {x \to \left( {x \vee y} \right)} \right)$$
D
$$\left( {\left( {x \vee y} \right) \leftrightarrow \left( { \sim x \to \sim y} \right)} \right)$$
2
GATE CSE 1995
+2
-0.6
If the proposition $$\neg p \Rightarrow q$$ is true, then the truth value of the proposition $$\neg p \vee \left( {p \Rightarrow q} \right)$$ where $$'\neg '$$ is negation, $$' \vee '$$ is inclusive or and $$' \Rightarrow '$$ is implication, is
A
true
B
multiple-valued
C
false
D
cannot be determined
3
GATE CSE 1994
True or False
+2
-0
Let $$p$$ and $$q$$ be propositions. Using only the truth table decide whether $$p \Leftrightarrow q$$ does not imply $$p \to \sim q$$ is true or false.
A
TRUE
B
FALSE
4
GATE CSE 1990
+2
-0.6
Indicate which of the following well-formed formula are valid:
A
$$\left( {\left( {{\rm P} \Rightarrow Q} \right) \wedge \left( {Q \Rightarrow R} \right)} \right) \Rightarrow \left( {{\rm P} \Rightarrow R} \right).$$
B
$$\left( {{\rm P} \Rightarrow Q} \right) \Rightarrow \left( { \sim P \Rightarrow \sim Q} \right)$$
C
$$\left( {{\rm P}\, \wedge \,\left( { \sim {\rm P}\,\,V \sim Q} \right)} \right) \Rightarrow Q\left( { \sim {\rm P} \Rightarrow \sim Q} \right)$$
D
$$\left( {\left( {{\rm P} \Rightarrow R} \right) \vee \left( {Q \Rightarrow R} \right)} \right) \Rightarrow \left( {\left( {\left( {{\rm P} \vee Q} \right) \Rightarrow R} \right)} \right)$$
GATE CSE Subjects
Discrete Mathematics
Programming Languages
Theory of Computation
Operating Systems
Digital Logic
Computer Organization
Database Management System
Data Structures
Computer Networks
Algorithms
Compiler Design
Software Engineering
Web Technologies
General Aptitude
EXAM MAP
Joint Entrance Examination