1

GATE CSE 2013

MCQ (More than One Correct Answer)

+2

-0.6

Which one of the following is

**NOT**logically equivalent to $$\neg \exists x\left( {\forall y\left( \alpha \right) \wedge \left( {\forall z\left( \beta \right)} \right)} \right)?$$2

GATE CSE 2011

MCQ (Single Correct Answer)

+2

-0.6

Which one of the following options is

$$P\left( x \right) = \neg \left( {x = 1} \right) \wedge \forall y\left( {\exists z\left( {x = y * z} \right) \Rightarrow \left( {y = x} \right) \vee \left( {y = 1} \right)} \right)$$

**correct**given three positive integers $$x, y$$ and $$z$$, and a predicate$$P\left( x \right) = \neg \left( {x = 1} \right) \wedge \forall y\left( {\exists z\left( {x = y * z} \right) \Rightarrow \left( {y = x} \right) \vee \left( {y = 1} \right)} \right)$$

3

GATE CSE 2010

MCQ (Single Correct Answer)

+2

-0.6

Suppose the predicate $$F(x,y,t)$$ is used to represent the statements that person $$x$$ can fool person $$y$$ at time $$t$$. Which one of the statements below expresses best the meaning of the formula $$\forall x\exists y\exists t\left( {\neg F\left( {x,y,t} \right)} \right)?$$

4

GATE CSE 2009

MCQ (Single Correct Answer)

+2

-0.6

Which one of the following is the most appropriate logical formula to represent the statement:

"$$Gold\,and\,silver\,ornaments\,are\,precious$$"

The following notations are used:

$$G\left( x \right):\,\,x$$ is a gold ornament.

$$S\left( x \right):\,\,x$$ is a silver ornament.

$$P\left( x \right):\,\,x$$ is precious.

Questions Asked from Mathematical Logic (Marks 2)

Number in Brackets after Paper Indicates No. of Questions

GATE CSE 2021 Set 1 (1)
GATE CSE 2020 (1)
GATE CSE 2018 (1)
GATE CSE 2016 Set 2 (1)
GATE CSE 2015 Set 2 (1)
GATE CSE 2014 Set 2 (1)
GATE CSE 2014 Set 3 (1)
GATE CSE 2014 Set 1 (1)
GATE CSE 2013 (2)
GATE CSE 2011 (1)
GATE CSE 2010 (1)
GATE CSE 2009 (3)
GATE CSE 2008 (5)
GATE CSE 2007 (1)
GATE CSE 2006 (5)
GATE CSE 2005 (3)
GATE CSE 2004 (2)
GATE CSE 2003 (1)
GATE CSE 2000 (1)
GATE CSE 1996 (1)
GATE CSE 1995 (1)
GATE CSE 1994 (1)
GATE CSE 1990 (1)

GATE CSE Subjects

Theory of Computation

Operating Systems

Algorithms

Database Management System

Data Structures

Computer Networks

Software Engineering

Compiler Design

Web Technologies

General Aptitude

Discrete Mathematics

Programming Languages