1
GATE ME 2005
MCQ (Single Correct Answer)
+2
-0.6
Which of the following is a solution of the differential equation $$\,{{{d^2}y} \over {d{x^2}}} + p{{dy} \over {dx}} + \left( {q + 1} \right)y = 0?$$ Where $$p=4, q=3$$
A
$${e^{ - 3x}}$$
B
$$x{e^{ - x}}$$
C
$$x$$ $${e^{ - 2x}}$$
D
$${x^2}\,{e^{ - 2x}}$$
2
GATE ME 2000
Subjective
+2
-0
Find the solution of the differential equation $$\,{{{d^2}u} \over {d{t^2}}} + {\lambda ^2}y = \cos \left( {wt + k} \right)$$ with initial conditions $$\,y\left( 0 \right) = 0,\,\,{{dy\left( 0 \right)} \over {dt}} = 0.$$ Here $$\lambda ,$$ $$w$$ and $$k$$ are constants. Use either the method of undetermined coefficients (or) the operator $$\left( {D = {\raise0.5ex\hbox{$\scriptstyle d$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle {dt}$}}} \right)$$
3
GATE ME 1998
Subjective
+2
-0
The radial displacement in a rotating disc is governed by the differential equation $$\,\,{{{d^2}u} \over {d{x^2}}} + {1 \over x}{{du} \over {dx}} - {u \over {{x^2}}} = 8x.\,\,\,$$ where $$u$$ is the displacement and $$x$$ is the radius. If $$u=0$$ at $$x=0$$ and $$u=2$$ at $$x=1,$$ calculate the displacement at $$\,x = {1 \over {2.}}$$
4
GATE ME 1994
Subjective
+2
-0
Solve for $$y$$ if $${{{d^2}y} \over {d{t^2}}} + 2{{dy} \over {dt}} + y = 0$$ with $$y(0)=1$$ and $${y^1}\left( 0 \right) = 2$$
GATE ME Subjects
Turbo Machinery
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
CBSE
Class 12