1
GATE ME 2012
MCQ (Single Correct Answer)
+2
-0.6
Consider the differential equation $$\,\,{x^2}{{{d^2}y} \over {d{x^2}}} + x{{dy} \over {dx}} - 4y = 0\,\,\,$$ with the boundary conditions of $$\,\,y\left( 0 \right) = 0\,\,\,$$ and $$\,\,y\left( 1 \right) = 1.\,\,\,$$ The complete solution of the differential equation is
A
$${x^2}$$
B
$$\sin \left( {{{\pi x} \over 2}} \right)$$
C
$${e^x}\sin \left( {{{\pi x} \over 2}} \right)$$
D
$${e^{ - x}}\sin \left( {{{\pi x} \over 2}} \right)$$
2
GATE ME 2008
MCQ (Single Correct Answer)
+2
-0.6
It is given that $$y'' + 2y' + y = 0,\,\,\,\,y\left( 0 \right) = 0,y\left( 1 \right) = 0.$$ What is $$y(0.5)$$?
A
$$0$$
B
$$0.37$$
C
$$0.62$$
D
$$1.13$$
3
GATE ME 2005
MCQ (Single Correct Answer)
+2
-0.6
The complete solution of the ordinary differential equation $${{{d^2}y} \over {d\,{x^2}}} + p{{dy} \over {dx}} + qy = 0$$ is $$\,y = {c_1}\,{e^{ - x}} + {C_2}\,{e^{ - 3x}}\,\,$$ then $$p$$ and $$q$$ are
A
$$p=3, q=3$$
B
$$p=3, q=4$$
C
$$p=4, q=3$$
D
$$p=4, q=4$$
4
GATE ME 2005
MCQ (Single Correct Answer)
+2
-0.6
Which of the following is a solution of the differential equation $$\,{{{d^2}y} \over {d{x^2}}} + p{{dy} \over {dx}} + \left( {q + 1} \right)y = 0?$$ Where $$p=4, q=3$$
A
$${e^{ - 3x}}$$
B
$$x{e^{ - x}}$$
C
$$x$$ $${e^{ - 2x}}$$
D
$${x^2}\,{e^{ - 2x}}$$
GATE ME Subjects
Turbo Machinery
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12