1
GATE ME 2014 Set 3
MCQ (Single Correct Answer)
+2
-0.6
Consider two solutions $$\,x\left( t \right)\,\,\,\, = \,\,\,{x_1}\left( t \right)\,\,$$ and $$x\left( t \right)\,\,\,\, = \,\,\,{x_2}\left( t \right)\,\,$$ of the differential equation
$$\,\,{{{d^2}x\left( t \right)} \over {d{t^2}}} + x\left( t \right) = 0,t > 0,\,\,$$ such that
$$\,{x_1}\left( 0 \right) = 1,{\left. {{{d{x_1}\left( t \right)} \over {dt}}} \right|_{t = 0}} = 0,$$ $$\,\,\,\,{x_2}\left( 0 \right) = 0,{\left. {{{d{x_2}\left( t \right)} \over {dt}}} \right|_{t = 0}} = 1$$
$$\,\,{{{d^2}x\left( t \right)} \over {d{t^2}}} + x\left( t \right) = 0,t > 0,\,\,$$ such that
$$\,{x_1}\left( 0 \right) = 1,{\left. {{{d{x_1}\left( t \right)} \over {dt}}} \right|_{t = 0}} = 0,$$ $$\,\,\,\,{x_2}\left( 0 \right) = 0,{\left. {{{d{x_2}\left( t \right)} \over {dt}}} \right|_{t = 0}} = 1$$
The wronskian $$\,w\left( t \right) = \left| {{{\matrix{ {{x_1}\left( t \right)} \cr {d{x_1}\left( t \right)} \cr } } \over {dt}}} \right.\left. {{{\matrix{ {{x_2}\left( t \right)} \cr {d{x_2}\left( t \right)} \cr } } \over {dt}}} \right|$$ at $$\,\,t = \pi /2$$
2
GATE ME 2014 Set 1
Numerical
+2
-0
If $$\,y = f\left( x \right)\,\,$$ is the solution of $${{{d^2}y} \over {d{x^2}}} = 0$$ with the boundary conditions $$y=5$$ at $$x=0,$$ and $$\,{{dy} \over {dx}} = 2$$ at $$x=10,$$ $$f(15)=$$_______.
Your input ____
3
GATE ME 2014 Set 1
MCQ (Single Correct Answer)
+2
-0.6
The matrix form of the linear system $${{dx} \over {dt}} = 3x - 5y$$ and $$\,{{dy} \over {dt}} = 4x + 8y\,\,$$ is
4
GATE ME 2013
MCQ (Single Correct Answer)
+2
-0.6
The solution to the differential equation $$\,{{{d^2}u} \over {d{x^2}}} - k{{du} \over {dx}} = 0\,\,\,$$ where $$'k'$$ is a constant, subjected to the boundary conditions $$\,\,u\left( 0 \right) = 0\,\,$$ and $$\,\,\,u\left( L \right) = U,\,\,$$ is
Questions Asked from Differential Equations (Marks 2)
Number in Brackets after Paper Indicates No. of Questions
GATE ME Subjects
Engineering Mechanics
Machine Design
Strength of Materials
Heat Transfer
Production Engineering
Industrial Engineering
Turbo Machinery
Theory of Machines
Engineering Mathematics
Fluid Mechanics
Thermodynamics
General Aptitude