1
GATE ME 2008
MCQ (Single Correct Answer)
+2
-0.6
It is given that $$y'' + 2y' + y = 0,\,\,\,\,y\left( 0 \right) = 0,y\left( 1 \right) = 0.$$ What is $$y(0.5)$$?
A
$$0$$
B
$$0.37$$
C
$$0.62$$
D
$$1.13$$
2
GATE ME 2005
MCQ (Single Correct Answer)
+2
-0.6
The complete solution of the ordinary differential equation $${{{d^2}y} \over {d\,{x^2}}} + p{{dy} \over {dx}} + qy = 0$$ is $$\,y = {c_1}\,{e^{ - x}} + {C_2}\,{e^{ - 3x}}\,\,$$ then $$p$$ and $$q$$ are
A
$$p=3, q=3$$
B
$$p=3, q=4$$
C
$$p=4, q=3$$
D
$$p=4, q=4$$
3
GATE ME 2005
MCQ (Single Correct Answer)
+2
-0.6
Which of the following is a solution of the differential equation $$\,{{{d^2}y} \over {d{x^2}}} + p{{dy} \over {dx}} + \left( {q + 1} \right)y = 0?$$ Where $$p=4, q=3$$
A
$${e^{ - 3x}}$$
B
$$x{e^{ - x}}$$
C
$$x$$ $${e^{ - 2x}}$$
D
$${x^2}\,{e^{ - 2x}}$$
4
GATE ME 2000
Subjective
+2
-0
Find the solution of the differential equation $$\,{{{d^2}u} \over {d{t^2}}} + {\lambda ^2}y = \cos \left( {wt + k} \right)$$ with initial conditions $$\,y\left( 0 \right) = 0,\,\,{{dy\left( 0 \right)} \over {dt}} = 0.$$ Here $$\lambda ,$$ $$w$$ and $$k$$ are constants. Use either the method of undetermined coefficients (or) the operator $$\left( {D = {\raise0.5ex\hbox{$\scriptstyle d$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle {dt}$}}} \right)$$
GATE ME Subjects
Turbo Machinery
EXAM MAP
Joint Entrance Examination
JEE MainJEE AdvancedWB JEEBITSATMHT CET
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN