1
GATE ME 2008
MCQ (Single Correct Answer)
+2
-0.6
It is given that $$y'' + 2y' + y = 0,\,\,\,\,y\left( 0 \right) = 0,y\left( 1 \right) = 0.$$ What is $$y(0.5)$$?
A
$$0$$
B
$$0.37$$
C
$$0.62$$
D
$$1.13$$
2
GATE ME 2005
MCQ (Single Correct Answer)
+2
-0.6
The complete solution of the ordinary differential equation $${{{d^2}y} \over {d\,{x^2}}} + p{{dy} \over {dx}} + qy = 0$$ is $$\,y = {c_1}\,{e^{ - x}} + {C_2}\,{e^{ - 3x}}\,\,$$ then $$p$$ and $$q$$ are
A
$$p=3, q=3$$
B
$$p=3, q=4$$
C
$$p=4, q=3$$
D
$$p=4, q=4$$
3
GATE ME 2005
MCQ (Single Correct Answer)
+2
-0.6
Which of the following is a solution of the differential equation $$\,{{{d^2}y} \over {d{x^2}}} + p{{dy} \over {dx}} + \left( {q + 1} \right)y = 0?$$ Where $$p=4, q=3$$
A
$${e^{ - 3x}}$$
B
$$x{e^{ - x}}$$
C
$$x$$ $${e^{ - 2x}}$$
D
$${x^2}\,{e^{ - 2x}}$$
4
GATE ME 2000
Subjective
+2
-0
Find the solution of the differential equation $$\,{{{d^2}u} \over {d{t^2}}} + {\lambda ^2}y = \cos \left( {wt + k} \right)$$ with initial conditions $$\,y\left( 0 \right) = 0,\,\,{{dy\left( 0 \right)} \over {dt}} = 0.$$ Here $$\lambda ,$$ $$w$$ and $$k$$ are constants. Use either the method of undetermined coefficients (or) the operator $$\left( {D = {\raise0.5ex\hbox{$\scriptstyle d$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle {dt}$}}} \right)$$
GATE ME Subjects
Turbo Machinery
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12