1
GATE CSE 2008
MCQ (Single Correct Answer)
+2
-0.6
Which of the following first order formulae is logically valid? Here $$\alpha \left( x \right)$$ is a first order formulae with $$x$$ as a free variable, and $$\beta $$ is a first order formula with no free variable.
A
$$\left[ {\beta \to \left( {\exists x,\alpha \left( x \right)} \right)} \right] \to \left[ {\forall x,\beta \to \alpha \left( x \right)} \right]$$
B
$$\left[ {\exists x,\beta \to \alpha \left( x \right)} \right] \to \left[ {\beta \to \left( {\forall x,\alpha \left( x \right)} \right)} \right]$$
C
$$\left[ {\left( {\exists x,\alpha \left( x \right)} \right) \to \beta } \right] \to \left[ {\forall x,\alpha \left( x \right) \to \beta } \right]$$
D
$$\left[ {\left( {\forall x,\alpha \left( x \right)} \right) \to \beta } \right] \to \left[ {\forall x,\alpha \left( x \right) \to \beta } \right]$$
2
GATE CSE 2007
MCQ (Single Correct Answer)
+2
-0.6
Which one of these first-order logic formulae is valid?
A
$$\forall x\left( {P\left( x \right) \Rightarrow Q\left( x \right)} \right) \Rightarrow \left( {\left( {\forall xP\left( x \right)} \right) \Rightarrow \left( {\forall xQ\left( x \right)} \right)} \right)$$
B
$$\exists x\left( {P\left( x \right) \vee Q\left( x \right)} \right) \Rightarrow \left( {\left( {\exists xP\left( x \right)} \right) \Rightarrow \left( {\exists xQ\left( x \right)} \right)} \right)$$
C
$$\exists x\left( {P\left( x \right) \wedge Q\left( x \right)} \right) \Leftrightarrow \left( {\left( {\exists xP\left( x \right)} \right) \wedge \left( {\exists xQ\left( x \right)} \right)} \right)$$
D
$$\forall x\exists yP\left( {x,y} \right) \Rightarrow \exists y\forall xP\left( {x,y} \right)$$
3
GATE CSE 2006
MCQ (Single Correct Answer)
+2
-0.6
Which one of the first order predicate calculus statements given below correctly expresses the following English statement?

Tigers and lion attack if they are hungry of threatened.

A
$$\forall x[(tiger(x) \wedge lion(x)) \to $$$$\{ (hungry(x) \vee threatened(x)) \to attacks(x)\} ]$$
B
$$\forall x[(tiger(x) \vee lion(x)) \to $$$$\{ (hungry(x) \wedge threatened(x)) \to attacks(x)\} ]$$
C
$$\forall x[(tiger(x) \vee lion(x)) \to $$$$\{ attacks(x) \to (hungry(x)) \vee threatened(x))\} ]$$
D
$$\forall x[(tiger(x) \vee lion(x)) \to $$$$\{ (hungry(x) \vee threatened(x)) \to attacks(x)\} ]$$
4
GATE CSE 2006
MCQ (Single Correct Answer)
+2
-0.6
Consider the following propositional statements:


$${\rm P}1:\,\,\left( {\left( {A \wedge B} \right) \to C} \right) \equiv \left( {\left( {A \to C} \right) \wedge \left( {B \to C} \right)} \right)$$
$${\rm P}2:\,\,\left( {\left( {A \vee B} \right) \to C} \right) \equiv \left( {\left( {A \to C} \right) \vee \left( {B \to C} \right)} \right)$$ Which one of the following is true?

A
$$P1$$ is tautology, but not $$P2$$
B
$$P2$$ is tautology, but not $$P1$$
C
$$P1$$ and $$P2$$ are both tautologies
D
Both $$P1$$ and $$P2$$ are not tautologies
GATE CSE Subjects
Software Engineering
Web Technologies
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12