1
GATE ME 2007
MCQ (Single Correct Answer)
+2
-0.6
Which combination of the following statements about steady incompressible forced vortex flow is correct?
P: Shear stress is zero at all points in the flow.
Q: Velocity is directly proportional to the radius from the centre of the vortex.
R: Total mechanical energy per unit mass is constant in the entire flow field.
S: Total mechanical energy per unit mass is constant in the entire flow field.
2
GATE ME 2005
MCQ (Single Correct Answer)
+2
-0.6
A leaf is caught in a whirlpool. At a given instant, the leaf is at a distance of $$120$$ $$m$$ from the centre of the whirlpool. The whirlpool can be described by the following velocitry distribution ;
$${V_r} = - \left( {{{60 \times {{10}^3}} \over {2\pi r}}} \right)m/s$$
and $${V_\theta } = - \left( {{{300 \times {{10}^3}} \over {2\pi r}}} \right)m/s.$$
$${V_r} = - \left( {{{60 \times {{10}^3}} \over {2\pi r}}} \right)m/s$$
and $${V_\theta } = - \left( {{{300 \times {{10}^3}} \over {2\pi r}}} \right)m/s.$$
Where $$r$$ (in meters) is the distance from the centre of the whirlpool . What will be the distance of the leaf from the centre when it has moved through half a revolution?
3
GATE ME 2004
MCQ (Single Correct Answer)
+2
-0.6
A closed cylinder having a radius $$R$$ and height $$H$$ is filled with oil of density $$\rho .$$ If the cylinder is rotated about its axis at an angular velocity of $$\omega $$ , then thrust at the bottom of the cylinder is
4
GATE ME 2004
MCQ (Single Correct Answer)
+2
-0.6
For a fluid flow through a divergent pipe of length $$L$$ having inlet and outlet radii of $${R_1}$$ and $${R_2}$$ respectively and a constant flow rate of $$Q,$$ assuming the velocity to be axial and uniform at any cross- section , the acceleration at the exit is
Questions Asked from Fluid Kinematics (Marks 2)
Number in Brackets after Paper Indicates No. of Questions
GATE ME 2022 Set 1 (1)
GATE ME 2017 Set 1 (1)
GATE ME 2016 Set 3 (1)
GATE ME 2015 Set 1 (2)
GATE ME 2014 Set 4 (2)
GATE ME 2010 (1)
GATE ME 2009 (1)
GATE ME 2008 (2)
GATE ME 2007 (1)
GATE ME 2005 (1)
GATE ME 2004 (2)
GATE ME 2001 (1)
GATE ME 1995 (1)
GATE ME 1993 (1)
GATE ME 1989 (1)
GATE ME 1988 (1)
GATE ME Subjects
Engineering Mechanics
Machine Design
Strength of Materials
Heat Transfer
Production Engineering
Industrial Engineering
Turbo Machinery
Theory of Machines
Engineering Mathematics
Fluid Mechanics
Thermodynamics
General Aptitude