1
GATE ME 2017 Set 1
+2
-0.6
For a steady flow, the velocity field is $$\overrightarrow V = \left( { - {x^2} + 3y} \right)\widehat i + \left( {2xy} \right)\widehat j.$$ The magnitude of the acceleration of the particle at $$(1, -1)$$ is
A
$$2$$
B
$$1$$
C
$$2\sqrt 5$$
D
$$0$$
2
GATE ME 2016 Set 3
+2
-0.6
For a two-dimensional flow, the velocity field is $$\overrightarrow u = {x \over {{x^2} + {y^2}}}\widehat i + {y \over {{x^2} + {y^2}}}\widehat j,$$ where $$\widehat i$$ and $$\widehat j\,\,$$ are the basis vectors in the $$x$$-$$y$$ Cartesian coordinate system .
Identify the CORRECT statements from below.
(1) The flow is incompressible
(3) $$y$$-component of acceleration, $${a_y} = {{ - y} \over {{{\left( {{x^2} + {y^2}} \right)}^2}}}$$
(4) $$x$$-component of acceleration , $${a_x} = {{ - \left( {x + y} \right)} \over {{{\left( {{x^2} + {y^2}} \right)}^2}}}$$

A
$$(2)$$ and $$(3)$$
B
$$(1)$$ and $$(3)$$
C
$$(1)$$ and $$(2)$$
D
$$(3)$$ and $$(4)$$
3
GATE ME 2015 Set 1
Numerical
+2
-0
The velocity field on an incompressible flow is given by
$$V = \left( {{a_1}x + {a_2}y + {a_3}z} \right)i + \left( {{b_1}x + {b_2}y + {b_3}z} \right)j$$ $$+ \left( {{c_1}x + {c_2}y + {c_3}z} \right)k,$$\$

Where $${a_1} = 2$$ and $${c_3} = - 4.$$ The value of $${b_2}$$ is _____________.

4
GATE ME 2015 Set 1
+2
-0.6
Match the following pairs:
A
$$P - {\rm I}V,\,\,Q - {\rm I},\,\,R - {\rm I}{\rm I},\,\,S - {\rm I}{\rm I}{\rm I}$$
B
$$P - {\rm I}V,\,\,Q - {\rm I}{\rm I}{\rm I},\,\,R - {\rm I},\,\,S - {\rm I}{\rm I}$$
C
$$P - {\rm I}{\rm I}{\rm I},\,\,Q - {\rm I},\,\,R - {\rm I}V,\,\,S - {\rm I}{\rm I}$$
D
v$$P - {\rm I}{\rm I}{\rm I},\,\,Q - {\rm I},\,\,R - {\rm I}{\rm I},\,\,S - {\rm I}V$$
GATE ME Subjects
EXAM MAP
Medical
NEET