1
GATE ME 2015 Set 1
Numerical
+2
-0
The velocity field on an incompressible flow is given by
$$V = \left( {{a_1}x + {a_2}y + {a_3}z} \right)i + \left( {{b_1}x + {b_2}y + {b_3}z} \right)j\,$$ $$ + \left( {{c_1}x + {c_2}y + {c_3}z} \right)k,\,\,$$
where $${{a_1} = 2}$$ and $${{c_3} = - 4.}$$ The value of $${{b_2}}$$ is ________.
$$V = \left( {{a_1}x + {a_2}y + {a_3}z} \right)i + \left( {{b_1}x + {b_2}y + {b_3}z} \right)j\,$$ $$ + \left( {{c_1}x + {c_2}y + {c_3}z} \right)k,\,\,$$
where $${{a_1} = 2}$$ and $${{c_3} = - 4.}$$ The value of $${{b_2}}$$ is ________.
Your input ____
2
GATE ME 2015 Set 3
Numerical
+2
-0
The value of $$\int\limits_C {\left[ {\left( {3x - 8{y^2}} \right)dx + \left( {4y - 6xy} \right)dy} \right],\,\,} $$ (where $$C$$ is the region bounded by $$x=0,$$ $$y=0$$ and $$x+y=1$$) is ________.
Your input ____
3
GATE ME 2014 Set 1
MCQ (Single Correct Answer)
+2
-0.6
The integral $$\,\,\oint\limits_C {\left( {ydx - xdy} \right)\,\,} $$ is evaluated along the circle $${x^2} + {y^2} = {1 \over 4}\,$$ traversed in counter clockwise direction. The integral is equal to
4
GATE ME 2013
MCQ (Single Correct Answer)
+2
-0.6
The following surface integral is to be evaluated over a sphere for the given steady velocity vector field $$F = xi + yj + zk$$ defined with respect to a Cartesian coordinate system having $$i, j$$ and $$k$$ as unit base vectors.
$$$\int {\int\limits_S {{1 \over 4}\left( {F.n} \right)dA} } $$$
Where $$S$$ is the sphere, $$\,\,{x^2} + {y^2} + {z^2} = 1\,\,$$ and $$n$$ is the outward unit normal vector to the sphere. The value of the surface integral is
Questions Asked from Vector Calculus (Marks 2)
Number in Brackets after Paper Indicates No. of Questions
GATE ME Subjects
Engineering Mechanics
Machine Design
Strength of Materials
Heat Transfer
Production Engineering
Industrial Engineering
Turbo Machinery
Theory of Machines
Engineering Mathematics
Fluid Mechanics
Thermodynamics
General Aptitude