1
GATE ME 2022 Set 1
Numerical
+2
-0
Consider two vectors
$\rm \vec a = 5 i + 7 j + 2 k $
$\rm \vec b = 3i - j + 6k$
Magnitude of the component of $\vec a$ orthogonal to $\vec b$ in the plane containing the vectors $\vec a$ and $\vec{\bar b}$ is ______ (round off to 2 decimal places).
Your input ____
2
GATE ME 2017 Set 2
Numerical
+2
-0
The surface integral $$\int {\int\limits_s {F.ndS} } $$ over the surface $$S$$ of the sphere $${x^2} + {y^2} + {z^2} = 9,$$ where $$\,F = \left( {x + y} \right){\rm I} + \left( {x + z} \right)j + \left( {y + z} \right)k\,\,$$ and $$n$$ is the unit outward surface normal, yields ___________.
Your input ____
3
GATE ME 2017 Set 1
Numerical
+2
-0
For the vector $$\overrightarrow V = 2yz\widehat i + 3xz\widehat j + 4xy\widehat k,$$ the value of $$\,\nabla .\left( {\nabla \times \overrightarrow \nabla } \right)\,\,$$ is ______________.
Your input ____
4
GATE ME 2016 Set 2
Numerical
+2
-0
A scalar potential $$\,\,\varphi \,\,$$ has the following gradient: $$\,\,\nabla \varphi = yz\widehat i + xz\widehat j + xy\widehat k.\,\,$$ Consider the integral $$\,\,\int_C {\nabla \varphi .d\overrightarrow r \,\,} $$ on the curve $$\overrightarrow r = x\widehat i + y\widehat j + z\widehat k.\,\,$$ The curve $$C$$ is parameterized as follows: $$\,\,\left\{ {\matrix{
{x = t} \cr
{y = {t^2}} \cr
{z = 3{t^2}} \cr
} \,\,\,\,\,\,\,} \right.$$ and $$1 \le t \le 3.\,\,\,\,\,$$
The value of the integral is _________.
The value of the integral is _________.
Your input ____
Questions Asked from Vector Calculus (Marks 2)
Number in Brackets after Paper Indicates No. of Questions
GATE ME Subjects
Engineering Mechanics
Strength of Materials
Theory of Machines
Engineering Mathematics
Machine Design
Fluid Mechanics
Turbo Machinery
Heat Transfer
Thermodynamics
Production Engineering
Industrial Engineering
General Aptitude