1
GATE ME 2025
Numerical
+2
-0

The directional derivative of the function $f$ given below at the point $(1,0)$ in the direction of $\frac{1}{2}(\hat{i}+\sqrt{3} \hat{j})$ is _______ (Rounded off to 1 decimal place).

$$ f(x, y)=x^2+x y^2 $$

Your input ____
2
GATE ME 2022 Set 1
Numerical
+2
-0

Consider two vectors

$\rm \vec a = 5 i + 7 j + 2 k $

$\rm \vec b = 3i - j + 6k$

Magnitude of the component of $\vec a$ orthogonal to $\vec b$ in the plane containing the vectors $\vec a$ and $\vec{\bar b}$ is ______ (round off to 2 decimal places).

Your input ____
3
GATE ME 2017 Set 2
Numerical
+2
-0
The surface integral $$\int {\int\limits_s {F.ndS} } $$ over the surface $$S$$ of the sphere $${x^2} + {y^2} + {z^2} = 9,$$ where $$\,F = \left( {x + y} \right){\rm I} + \left( {x + z} \right)j + \left( {y + z} \right)k\,\,$$ and $$n$$ is the unit outward surface normal, yields ___________.
Your input ____
4
GATE ME 2017 Set 1
Numerical
+2
-0
For the vector $$\overrightarrow V = 2yz\widehat i + 3xz\widehat j + 4xy\widehat k,$$ the value of $$\,\nabla .\left( {\nabla \times \overrightarrow \nabla } \right)\,\,$$ is ______________.
Your input ____
GATE ME Subjects
Turbo Machinery
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12