1
GATE EE 2017 Set 1
+2
-0.6
The output expression for the Karnaugh map shown below is
A
$$B\overline D + BCD$$
B
$$B\overline D + AB$$
C
$$\overline B D + ABC$$
D
$$B\overline D + ABC$$
2
GATE EE 2014 Set 2
+2
-0.6
The $$SOP$$ (sum of products) from of a Boolean function is $$\sum \left( {0,1,3,7,11} \right),$$ where inputs are $$A,B,C,D$$ ($$A$$ is $$MSB$$, and $$D$$ is $$LSB$$). The equivalent minimized expression of the function is
A
$$\left( {\overline B + C} \right)\left( {\overline A + C} \right)\left( {\overline A + \overline B } \right)\left( {\overline C + D} \right)$$
B
$$\left( {\overline B + C} \right)\left( {\overline A + C} \right)\left( {\overline A + \overline C } \right)\left( {\overline C + D} \right)$$
C
$$\left( {\overline B + C} \right)\left( {\overline A + C} \right)\left( {\overline A + \overline C } \right)\left( {\overline C + \overline D } \right)$$
D
$$\left( {\overline B + C} \right)\left( {A + \overline B } \right)\left( {\overline A + \overline B } \right)\left( {\overline C + D} \right)$$
3
GATE EE 2014 Set 1
+2
-0.6
Which of the following logic circuits is a realization of the function $$F$$ whose karnaugh map is shown in figure
A
B
C
D
4
GATE EE 2010
+2
-0.6
A minimized form of the function $$F$$ is
A
$$F = \overline X \overline Y + YZ$$
B
$$F = \overline {XY} + YZ$$
C
$$F = \overline {XY} + Y\overline Z$$
D
$$F = \overline {XY} + \overline Y Z$$
EXAM MAP
Medical
NEET