1
GATE EE 2023
Numerical
+2
-0
The discrete-time Fourier transform of a signal $$x[n]$$ is $$X(\Omega ) = (1 + \cos \Omega ){e^{ - j\Omega }}$$. Consider that $${x_p}[n]$$ is a periodic signal of period N = 5 such that
$${x_p}[n] = x[n]$$, for $$n = 0,1,2$$
= 0, for $$n = 3,4$$
Note that $${x_p}[n] = \sum\nolimits\limits_{k = 0}^{n - 1} {{a_k}{e^{j{{2\pi } \over N}kn}}} $$. The magnitude of the Fourier series coeffiient $$a_3$$ is __________ (Round off to 3 decimal places).
Your input ____
2
GATE EE 2017 Set 2
MCQ (Single Correct Answer)
+2
-0.6
A cascade system having the impulse responses $$$\begin{array}{l}h_1\left(n\right)=\left\{1,\;-1\right\}\;\;\;and\;\;h_2\left(n\right)=\left\{1,\;1\right\}\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\uparrow\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\uparrow\end{array}$$$ is shown in the
figure below, where symbol $$\uparrow$$ denotes the time origin.
The input sequence x(n) for which the cascade system produces an output sequence
$$$\begin{array}{l}y\left(n\right)=\left\{1,\;2,\;1,\;-1,\;-2,\;-1\right\}\;\;is\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\uparrow\end{array}$$$
3
GATE EE 2015 Set 1
MCQ (Single Correct Answer)
+2
-0.6
Consider a discrete time signal given by
x[n]=(-0.25)nu[n]+(0.5)nu[-n-1]
The region of convergence of its Z-transform would be
x[n]=(-0.25)nu[n]+(0.5)nu[-n-1]
The region of convergence of its Z-transform would be
4
GATE EE 2014 Set 2
MCQ (Single Correct Answer)
+2
-0.6
A discrete system is represented by the difference equation
$$$\begin{bmatrix}X_1\left(k+1\right)\\X_2\left(k+2\right)\end{bmatrix}=\begin{bmatrix}a&a-1\\a+1&a\end{bmatrix}\begin{bmatrix}X_1\left(k\right)\\X_2\left(k\right)\end{bmatrix}$$$
It has initial condition $$X_1\left(0\right)=1;\;X_2\left(0\right)=0$$. The pole location of the system for a = 1,
are
Questions Asked from Discrete Time Signal Z Transformation (Marks 2)
Number in Brackets after Paper Indicates No. of Questions
GATE EE Subjects
Electric Circuits
Electromagnetic Fields
Signals and Systems
Electrical Machines
Engineering Mathematics
General Aptitude
Power System Analysis
Electrical and Electronics Measurement
Analog Electronics
Control Systems
Power Electronics