1
GATE EE 2024
Numerical
+1
-0

Let $X(\omega)$ be the Fourier transform of the signal

$x(t) = e^{-t^4} \cos t, \quad -\infty < t < \infty$.

The value of the derivative of $X(\omega)$ at $\, \omega = 0$ is ______ (rounded off to 1 decimal place).

Your input ____
2
GATE EE 2014 Set 3
MCQ (Single Correct Answer)
+1
-0.3
A function f(t) is shown in the figure. GATE EE 2014 Set 3 Signals and Systems - Continuous Time Signal Fourier Transform Question 12 English The Fourier transform F($$\mathrm\omega$$) of f(t) is
A
real and even function of $$\mathrm\omega$$
B
real and odd function of $$\mathrm\omega$$
C
imaginary and odd function of $$\mathrm\omega$$
D
imaginary and even function of $$\mathrm\omega$$
3
GATE EE 2014 Set 3
MCQ (Single Correct Answer)
+1
-0.3
A signal is represented by $$$x\left(t\right)=\left\{\begin{array}{l}1\;\;\;\left|t\right|\;<\;1\\0\;\;\;\left|t\right|\;>\;1\end{array}\right.$$$ The Fourier transform of the convolved signal y(t)=x(2t) * x(t/2) is
A
$$\frac4{\omega^2}\sin\left(\frac\omega2\right)\sin\left(2\omega\right)$$
B
$$\frac4{\omega^2}\sin\left(\frac\omega2\right)$$
C
$$\frac4{\omega^2}\sin\left(2\omega\right)$$
D
$$\frac4{\omega^2}\sin^2\left(\omega\right)$$
GATE EE Subjects
EXAM MAP