1
GATE EE 2008
+2
-0.6
Given X(z)=$$\frac z{\left(z-a\right)^2}$$ with $$\left|z\right|$$ > a, the residue of X(z)zn-1 at z = a for n $$\geq$$ 0 will be
A
an-1
B
an
C
nan
D
nan-1
2
GATE EE 2006
+2
-0.6
The discrete-time signal $$x\left[n\right]\leftrightarrow X\left(z\right)={\textstyle\sum_{n=0}^\infty}\frac{3^n}{2+n}z^{2n}$$\$ where $$\leftrightarrow$$ denote a transform-pair relationship, is orthogonal to the signal
A
$$y_1\left[n\right]\leftrightarrow Y_1\left(z\right)={\textstyle\sum_{n=0}^\infty}\left(\frac23\right)^nz^{-n}$$
B
$$y_2\left[n\right]\leftrightarrow Y_2\left(z\right)={\textstyle\sum_{n=0}^\infty}\left(5^n-n\right)z^{-\left(2n+1\right)}$$
C
$$y_3\left[n\right]\leftrightarrow Y_3\left(z\right)={\textstyle\sum_{n=-\infty}^\infty}2^{-\left|n\right|}z^{-n}$$
D
$$y_4\left[n\right]\leftrightarrow Y_4\left(z\right)=2z^{-4}\;+\;3z^{-2}+1$$
3
GATE EE 2005
+2
-0.6
If u(k) is the unit step and $$\delta\left(k\right)$$ is the unit impulse function, the inverse z-transform of $$F\left(z\right)=\frac1{z+1}$$ for k>0 is:
A
$$\left(-1\right)^k\delta\left(k\right)$$
B
$$\delta\left(k\right)-\left(-1\right)^k$$
C
$$\left(-1\right)^ku\left(k\right)$$
D
$$u\left(k\right)-\left(-1\right)^k$$
EXAM MAP
Medical
NEET