1
GATE EE 2014 Set 2
MCQ (Single Correct Answer)
+2
-0.6
A discrete system is represented by the difference equation $$$\begin{bmatrix}X_1\left(k+1\right)\\X_2\left(k+2\right)\end{bmatrix}=\begin{bmatrix}a&a-1\\a+1&a\end{bmatrix}\begin{bmatrix}X_1\left(k\right)\\X_2\left(k\right)\end{bmatrix}$$$ It has initial condition $$X_1\left(0\right)=1;\;X_2\left(0\right)=0$$. The pole location of the system for a = 1, are
A
$$1\pm j0$$
B
$$-1\pm j0$$
C
$$\pm1+j0$$
D
$$0\pm j1$$
2
GATE EE 2014 Set 1
MCQ (Single Correct Answer)
+2
-0.6
Let $$X\left(z\right)=\frac1{1-z^{-3}}$$ be the Z–transform of a causal signal x[n]. Then, the values of x[2] and x[3] are
A
0 and 0
B
0 and 1
C
1 and 0
D
1 and 1
3
GATE EE 2008
MCQ (Single Correct Answer)
+2
-0.6
Given X(z)=$$\frac z{\left(z-a\right)^2}$$ with $$\left|z\right|$$ > a, the residue of X(z)zn-1 at z = a for n $$\geq$$ 0 will be
A
an-1
B
an
C
nan
D
nan-1
4
GATE EE 2006
MCQ (Single Correct Answer)
+2
-0.6
The discrete-time signal $$$x\left[n\right]\leftrightarrow X\left(z\right)={\textstyle\sum_{n=0}^\infty}\frac{3^n}{2+n}z^{2n}$$$ where $$\leftrightarrow$$ denote a transform-pair relationship, is orthogonal to the signal
A
$$y_1\left[n\right]\leftrightarrow Y_1\left(z\right)={\textstyle\sum_{n=0}^\infty}\left(\frac23\right)^nz^{-n}$$
B
$$y_2\left[n\right]\leftrightarrow Y_2\left(z\right)={\textstyle\sum_{n=0}^\infty}\left(5^n-n\right)z^{-\left(2n+1\right)}$$
C
$$y_3\left[n\right]\leftrightarrow Y_3\left(z\right)={\textstyle\sum_{n=-\infty}^\infty}2^{-\left|n\right|}z^{-n}$$
D
$$y_4\left[n\right]\leftrightarrow Y_4\left(z\right)=2z^{-4}\;+\;3z^{-2}+1$$
GATE EE Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12