1
GATE ME 2024
Numerical
+2
-1.33

A three-hinge arch ABC in the form of a semi-circle is shown in the figure. The arch is in static equilibrium under vertical loads of $P = 100$ kN and $Q = 50$ kN. Neglect friction at all the hinges. The magnitude of the horizontal reaction at B is _________ kN (rounded off to 1 decimal place).

GATE ME 2024 Engineering Mechanics - Engineering Mechanics Static and Dynamics Question 1 English
Your input ____
2
GATE ME 2017 Set 2
Numerical
+2
-0
The rod PQ of length L = 2 m, and uniformly distributed mass of M = 10 kg, is released from rest at the position shown in the figure. The ends slide along the frictionless faces OP and OQ. Assume acceleration due to gravity, g = 10 m/s2 . The mass moment of inertia of the rod about its centre of mass and an axis perpendicular to the plane of the figure is (ML2 /12). At this instant, the magnitude of angular acceleration (in radian/s2 ) of the rod is ____________. GATE ME 2017 Set 2 Engineering Mechanics - Engineering Mechanics Static and Dynamics Question 7 English
Your input ____
3
GATE ME 2017 Set 1
MCQ (Single Correct Answer)
+2
-0.6
Two disks A and B with identical mass (m) and radius (R) are initially at rest. They roll down from the top of identical inclined planes without slipping. Disk A has all of its mass concentrated at the rim, while Disk B has its mass uniformly distributed. At the bottom of the plane, the ratio of velocity of the center of disk A to the velocity of the center of disk B is.
A
$$\sqrt {{3 \over 4}} $$
B
$$\sqrt {{3 \over 2}} $$
C
$$1$$
D
$$\sqrt 2 $$
4
GATE ME 2016 Set 1
Numerical
+2
-0
A block of mass m rests on an inclined plane and is attached by a string to the wall as shown in the figure. The coefficient of static friction between the plane and the block is $$0.25.$$ The string can withstand a maximum force of $$20$$ N. The maximum value of the mass (m) for which the string will not break and the block will be in static equilibrium is ____________ kg.
Take $$\cos \theta = 0.8$$ and $$\sin \theta = 0.6$$. Acceleration due to gravity g $$=$$ $$10$$ m/s2 GATE ME 2016 Set 1 Engineering Mechanics - Engineering Mechanics Static and Dynamics Question 14 English
Your input ____
GATE ME Subjects
Turbo Machinery
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
CBSE
Class 12