1
GATE CSE 2007
MCQ (Single Correct Answer)
+1
-0.3
Let $$A$$ be the matrix $$\left[ {\matrix{ 3 & 1 \cr 1 & 2 \cr } } \right]$$. What is the maximum value of $${x^T}Ax$$ where the maximum is taken over all $$x$$ that are the unit eigenvectors of $$A$$?
A
$$5$$
B
$${{5 + \sqrt 5 } \over 2}$$
C
$$3$$
D
$${{5 - \sqrt 5 } \over 2}$$
2
GATE CSE 2005
MCQ (Single Correct Answer)
+1
-0.3
The determination of the matrix given below is $$$\left[ {\matrix{ 0 & 1 & 0 & 2 \cr { - 1} & 1 & 1 & 3 \cr 0 & 0 & 0 & 1 \cr 1 & { - 2} & 0 & 1 \cr } } \right]$$$
A
- 1
B
0
C
1
D
2
3
GATE CSE 2004
MCQ (Single Correct Answer)
+1
-0.3
Let A, B, C, D be $$n\,\, \times \,\,n$$ matrices, each with non-zero determination. If ABCD = I, then $${B^{ - 1}}$$ is
A
$${D^{ - 1}}\,\,\,{C^{ - 1}}\,\,{A^{ - 1}}$$
B
CDA
C
ADC
D
Does not necessarily exist
4
GATE CSE 2004
MCQ (Single Correct Answer)
+1
-0.3
The number of different $$n \times n$$ symmetric matrices with each elements being either $$0$$ or $$1$$ is
A
$${2^n}$$
B
$${2^{{n^2}}}$$
C
$${2^{{{{n^2} + n} \over 2}}}$$
D
$${2^{{{{n^2} - n} \over 2}}}$$
GATE CSE Subjects
Software Engineering
Web Technologies
EXAM MAP