1
GATE CSE 2004
+1
-0.3
What values of x, y and z satisfy the following system of linear equations? $$\left[ {\matrix{ 1 & 2 & 3 \cr 1 & 3 & 4 \cr 2 & 3 & 3 \cr } } \right]\,\,\left[ {\matrix{ x \cr y \cr z \cr } } \right]\,\, = \,\left[ {\matrix{ 6 \cr 8 \cr {12} \cr } } \right]$$\$
A
x = 6, y = 3, z = 2
B
x = 12, y = 3, z = - 4
C
x = 6, y = 6, z = - 4
D
x = 12, y = - 3, z = 0
2
GATE CSE 2004
+1
-0.3
The number of different $$n \times n$$ symmetric matrices with each elements being either $$0$$ or $$1$$ is
A
$${2^n}$$
B
$${2^{{n^2}}}$$
C
$${2^{{{{n^2} + n} \over 2}}}$$
D
$${2^{{{{n^2} - n} \over 2}}}$$
3
GATE CSE 2003
+1
-0.3
$$A$$ system of equations represented by $$AX=0$$ where $$X$$ is a column vector of unknown and $$A$$ is a square matrix containing coefficients has a non-trival solution when $$A$$ is.
A
non-singular
B
singular
C
symmetric
D
Hermitian
4
GATE CSE 2002
+1
-0.3
The rank of the matrix$$\left[ {\matrix{ 1 & 1 \cr 0 & 0 \cr } } \right]\,\,is$$
A
4
B
2
C
1
D
0
GATE CSE Subjects
Theory of Computation
Operating Systems
Algorithms
Digital Logic
Database Management System
Data Structures
Computer Networks
Software Engineering
Compiler Design
Web Technologies
General Aptitude
Discrete Mathematics
Programming Languages
Computer Organization
EXAM MAP
Joint Entrance Examination