1
GATE CSE 2013
+1
-0.3
Which of the following does not equal
$$\left| {\matrix{ 1 & x & {{x^2}} \cr 1 & y & {{y^2}} \cr 1 & z & {{z^2}} \cr } } \right|?$$
A
$$\left| {\matrix{ 1 & {x\left( {x + 1} \right)} & {x + 1} \cr 1 & {y\left( {y + 1} \right)} & {y + 1} \cr 1 & {z\left( {z + 1} \right)} & {z + 1} \cr } } \right|$$
B
$$\left| {\matrix{ 1 & {x + 1} & {{x^2} + 1} \cr 1 & {y + 1} & {{y^2} + 1} \cr 1 & {z + 1} & {{z^2} + 1} \cr } } \right|$$
C
$$\left| {\matrix{ 0 & {x - y} & {{x^2} - {y^2}} \cr 0 & {y - z} & {{x^2} - {z^2}} \cr 1 & z & {{z^2}} \cr } } \right|$$
D
$$\left| {\matrix{ 2 & {x + y} & {{x^2} + {y^2}} \cr 2 & {y + z} & {{x^2} + {z^2}} \cr 1 & z & {{z^2}} \cr } } \right|$$
2
GATE CSE 2012
+1
-0.3
Let $$A$$ be the $$2 \times 2$$ matrix with elements $${a_{11}} = {a_{12}} = {a_{21}} = + 1$$ and $${a_{22}} = - 1$$. Then the eigen values of the matrix $${A^{19}}$$ are
A
$$1024$$ and $$-1024$$
B
$$1024\sqrt 2 \,i$$ and $$- 1024\sqrt 2$$
C
$$4\sqrt 2$$ and $$-4\sqrt 2$$
D
$$512\sqrt 2$$ and $$-512\sqrt 2$$
3
GATE CSE 2010
+1
-0.3
Consider the following matrix $$A = \left[ {\matrix{ 2 & 3 \cr x & y \cr } } \right].$$
If the eigen values of $$A$$ are $$4$$ and $$8$$ then
A
$$x=4, y=10$$
B
$$x=5,$$ $$y=8$$
C
$$x=-3,$$ $$y=9$$
D
$$x=-4,$$ $$y=10$$
4
GATE CSE 2008
+1
-0.3
The following system of equations
$${x_1}\, + \,{x_2}\, + 2{x_3}\, = 1$$
$${x_1}\, + \,2 {x_2}\, + 3{x_3}\, = 2$$
$${x_1}\, + \,4{x_2}\, + a{x_3}\, = 4$$ has a unique solution. The only possible value (s) for $$\alpha$$ is/are
A
0
B
either 0 or 1
C
one of 0, 1 or - 1
D
any real number except 5
GATE CSE Subjects
Discrete Mathematics
Programming Languages
Theory of Computation
Operating Systems
Digital Logic
Computer Organization
Database Management System
Data Structures
Computer Networks
Algorithms
Compiler Design
Software Engineering
Web Technologies
General Aptitude
EXAM MAP
Joint Entrance Examination