1
GATE CSE 2010
MCQ (Single Correct Answer)
+1
-0.3
Consider the following matrix $$A = \left[ {\matrix{ 2 & 3 \cr x & y \cr } } \right].$$
If the eigen values of $$A$$ are $$4$$ and $$8$$ then
A
$$x=4, y=10$$
B
$$x=5, $$ $$y=8$$
C
$$x=-3,$$ $$y=9$$
D
$$x=-4,$$ $$y=10$$
2
GATE CSE 2008
MCQ (Single Correct Answer)
+1
-0.3
The following system of equations
$${x_1}\, + \,{x_2}\, + 2{x_3}\, = 1$$
$${x_1}\, + \,2 {x_2}\, + 3{x_3}\, = 2$$
$${x_1}\, + \,4{x_2}\, + a{x_3}\, = 4$$ has a unique solution. The only possible value (s) for $$\alpha $$ is/are
A
0
B
either 0 or 1
C
one of 0, 1 or - 1
D
any real number except 5
3
GATE CSE 2007
MCQ (Single Correct Answer)
+1
-0.3
Let $$A$$ be the matrix $$\left[ {\matrix{ 3 & 1 \cr 1 & 2 \cr } } \right]$$. What is the maximum value of $${x^T}Ax$$ where the maximum is taken over all $$x$$ that are the unit eigenvectors of $$A$$?
A
$$5$$
B
$${{5 + \sqrt 5 } \over 2}$$
C
$$3$$
D
$${{5 - \sqrt 5 } \over 2}$$
4
GATE CSE 2005
MCQ (Single Correct Answer)
+1
-0.3
The determination of the matrix given below is $$$\left[ {\matrix{ 0 & 1 & 0 & 2 \cr { - 1} & 1 & 1 & 3 \cr 0 & 0 & 0 & 1 \cr 1 & { - 2} & 0 & 1 \cr } } \right]$$$
A
- 1
B
0
C
1
D
2
GATE CSE Subjects
Software Engineering
Web Technologies
EXAM MAP
Joint Entrance Examination
JEE MainJEE AdvancedWB JEEBITSAT
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN