The Lucas sequence $$L_n$$ is defined by the recurrence relation:
$${L_n} = {L_{n - 1}} + {L_{n - 2}}$$, for $$n \ge 3$$,
with $${L_1} = 1$$ and $${L_2} = 3$$.
Which one of the options given is TRUE?
Let $$A = \left[ {\matrix{ 1 & 2 & 3 & 4 \cr 4 & 1 & 2 & 3 \cr 3 & 4 & 1 & 2 \cr 2 & 3 & 4 & 1 \cr } } \right]$$ and $$B = \left[ {\matrix{ 3 & 4 & 1 & 2 \cr 4 & 1 & 2 & 3 \cr 1 & 2 & 3 & 4 \cr 2 & 3 & 4 & 1 \cr } } \right]$$.
Let $$\mathrm{det}(A)$$ and $$\mathrm{det}(B)$$ denote the determinates of the matrices A and B, respectively.
Which one of the options given below is TRUE?
Let A be the adjacency matrix of the graph with vertices {1, 2, 3, 4, 5}.
Let $$\lambda_1,\lambda_2,\lambda_3,\lambda_4$$, and $$\lambda_5$$ be the five eigenvalues of A. Note that these eigenvalues need not be distinct.
The value of $$\lambda_1+\lambda_2+\lambda_3+\lambda_4+\lambda_5=$$ ______________
Consider the following two statements with respect to the matrices Am $$\times$$ n , Bn $$\times$$ m , Cn$$\times$$ n and Dn $$\times$$ n .
Statement 1 : tr(AB) = tr(BA)
Statement 2 : tr(CD) = tr(DC)
where tr( ) represents the trace of a matrix. Which one of the following holds?