1
GATE CSE 2014 Set 3
Numerical
+1
-0
If $${V_1}$$ and $${V_2}$$ are 4-dimensional subspaces of a 6-dimensional vector space V, then the smallest possible dimension of $${V_1}\, \cap \,\,{V_2}$$ is _________________.
Your input ____
2
GATE CSE 2014 Set 1
Numerical
+1
-0
The value of the dot product of the eigenvectors corresponding to any pair of different eigen values of a 4-by-4 symmetric positive definite matrix is ____________.
Your input ____
3
GATE CSE 2014 Set 1
Numerical
+1
-0
Consider the following system of equations:
3x + 2y = 1
4x + 7z = 1
x + y + z =3
x - 2y + 7z = 0
The number of solutions for this system is ______________________
Your input ____
4
GATE CSE 2013
MCQ (Single Correct Answer)
+1
-0.3
Which of the following does not equal
$$\left| {\matrix{ 1 & x & {{x^2}} \cr 1 & y & {{y^2}} \cr 1 & z & {{z^2}} \cr } } \right|?$$
A
$$\left| {\matrix{ 1 & {x\left( {x + 1} \right)} & {x + 1} \cr 1 & {y\left( {y + 1} \right)} & {y + 1} \cr 1 & {z\left( {z + 1} \right)} & {z + 1} \cr } } \right|$$
B
$$\left| {\matrix{ 1 & {x + 1} & {{x^2} + 1} \cr 1 & {y + 1} & {{y^2} + 1} \cr 1 & {z + 1} & {{z^2} + 1} \cr } } \right|$$
C
$$\left| {\matrix{ 0 & {x - y} & {{x^2} - {y^2}} \cr 0 & {y - z} & {{x^2} - {z^2}} \cr 1 & z & {{z^2}} \cr } } \right|$$
D
$$\left| {\matrix{ 2 & {x + y} & {{x^2} + {y^2}} \cr 2 & {y + z} & {{x^2} + {z^2}} \cr 1 & z & {{z^2}} \cr } } \right|$$
GATE CSE Subjects
Software Engineering
Web Technologies
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12