1
GATE CSE 1994
Fill in the Blanks
+1
-0
The inverse of the matrix $$\left[ {\matrix{
1 & 0 & 1 \cr
{ - 1} & 1 & 1 \cr
0 & 1 & 0 \cr
} } \right]$$ is
2
GATE CSE 1994
MCQ (Single Correct Answer)
+1
-0.3
The rank of the matrix $$\left[ {\matrix{
0 & 0 & { - 3} \cr
9 & 3 & 5 \cr
3 & 1 & 1 \cr
} } \right]$$ is
3
GATE CSE 1993
MCQ (More than One Correct Answer)
+1
-0
The eigen vector (s) of the matrix
$$\left[ {\matrix{ 0 & 0 & \alpha \cr 0 & 0 & 0 \cr 0 & 0 & 0 \cr } } \right],\alpha \ne 0$$ is (are)
$$\left[ {\matrix{ 0 & 0 & \alpha \cr 0 & 0 & 0 \cr 0 & 0 & 0 \cr } } \right],\alpha \ne 0$$ is (are)
4
GATE CSE 1993
Numerical
+1
-0
If $$A = \left[ {\matrix{
1 & 0 & 0 & 1 \cr
0 & { - 1} & 0 & { - 1} \cr
0 & 0 & i & i \cr
0 & 0 & 0 & { - i} \cr
} } \right]$$ the matrix $${A^4},$$
calculated by the use of Cayley - Hamilton theoram (or) otherwise is
calculated by the use of Cayley - Hamilton theoram (or) otherwise is
Your input ____
Questions Asked from Linear Algebra (Marks 1)
Number in Brackets after Paper Indicates No. of Questions
GATE CSE 2024 Set 1 (1)
GATE CSE 2023 (3)
GATE CSE 2022 (1)
GATE CSE 2021 Set 2 (1)
GATE CSE 2019 (1)
GATE CSE 2018 (1)
GATE CSE 2017 Set 2 (1)
GATE CSE 2017 Set 1 (1)
GATE CSE 2016 Set 2 (2)
GATE CSE 2016 Set 1 (2)
GATE CSE 2015 Set 1 (1)
GATE CSE 2015 Set 3 (1)
GATE CSE 2015 Set 2 (2)
GATE CSE 2014 Set 2 (1)
GATE CSE 2014 Set 3 (2)
GATE CSE 2014 Set 1 (2)
GATE CSE 2013 (1)
GATE CSE 2012 (1)
GATE CSE 2010 (1)
GATE CSE 2008 (1)
GATE CSE 2007 (1)
GATE CSE 2005 (1)
GATE CSE 2004 (3)
GATE CSE 2003 (1)
GATE CSE 2002 (1)
GATE CSE 2001 (1)
GATE CSE 2000 (2)
GATE CSE 1998 (1)
GATE CSE 1997 (1)
GATE CSE 1996 (2)
GATE CSE 1995 (2)
GATE CSE 1994 (2)
GATE CSE 1993 (2)
GATE CSE Subjects
Theory of Computation
Operating Systems
Algorithms
Database Management System
Data Structures
Computer Networks
Software Engineering
Compiler Design
Web Technologies
General Aptitude
Discrete Mathematics
Programming Languages