1
GATE CSE 2021 Set 2
Numerical
+1
-0
Suppose that P is a 4 × 5 matrix such that every solution of the equation Px = 0 is a scalar multiple of [2 5 4 3 1]T​. The rank of P is _________
Your input ____
2
GATE CSE 2019
MCQ (Single Correct Answer)
+1
-0.33
Let X be a square matrix. Consider the following two statements on X.

I. X is invertible.

II. Determinant of X is non-zero.

Which one of the following is TRUE?
A
I implies II; II does not imply I
B
II implies I; I does not imply II
C
I does not imply II; II does not imply I
D
I and II are equivalent statements
3
GATE CSE 2018
Numerical
+1
-0
Consider a matrix $$A = u{v^T}$$ where $$u = \left( {\matrix{ 1 \cr 2 \cr } } \right),v = \left( {\matrix{ 1 \cr 1 \cr } } \right).$$ Note that $${v^T}$$ denotes the transpose of $$v.$$ The largest eigenvalue of $$A$$ is _____.
Your input ____
4
GATE CSE 2017 Set 1
MCQ (Single Correct Answer)
+1
-0.3
Let $${c_1},.....,\,\,{c_n}$$ be scalars, not all zero, such that $$\sum\limits_{i = 1}^n {{c_i}{a_i} = 0} $$ where $${{a_i}}$$ are column vectors in $${R^{11}}.$$ Consider the set of linear equations $$AX=b$$

Where $$A = \left[ {{a_1},.....,\,\,{a_n}} \right]$$ and $$b = \sum\limits_{i = 1}^n {{a_i}.} $$
The set of equations has

A
a unique solution at $$x\,\,\, = \,\,\,{J_n}$$ where $${J_n}$$ denotes a $$n$$-dimensional vector of all $$1$$
B
no solution
C
infinitely many solutions
D
finitely many solutions
GATE CSE Subjects
Software Engineering
Web Technologies
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12