$$h$$ is specific enthalpy, $$s$$ is specific entropy and $$v$$ the specific volume; subscripts $$f$$ and $$g$$ denote saturated liquid state and saturated vapour state.
Heat supplied $$(kJ/kg)$$ to the cycle is
$$h$$ is specific enthalpy, $$s$$ is specific entropy and $$v$$ the specific volume; subscripts $$f$$ and $$g$$ denote saturated liquid state and saturated vapour state.
The net work output $$(kJ/kg)$$ of the cycle is
If mass flow rate of steam through the turbine is $$20kg/s,$$ the power output of the turbine (in $$MW$$) is
Assume the above turbine to be part of a simple Rankine cycle. The density of water at the inlet to the pump is $$1000$$ $$kg/{m^3}.$$ Ignoring kinetic and potential energy effects, the specific work (in $$kJ/kg$$) supplied to the pump is