1
GATE ME 2014 Set 4
Numerical
+2
-0
Steam with specific enthalpy $$\left( h \right)\,\,3214\,\,kJ/kg$$ enters an adiabatic turbine operating at steady state with a flow rate $$10kg/s.$$ As it expands, at a point where $$h$$ is $$2920$$ $$kJ/kg,$$ $$1.5$$ $$kg/s$$ is extracted for heating purposes. The remaining $$8.5kg/s$$ further expands to the turbine exit, where $$h=2374$$ $$kJ/kg$$. Neglecting changes in kinetic and potential energies, the net power output (in $$kW$$) of the turbine is __________.
Your input ____
2
GATE ME 2014 Set 2
Numerical
+2
-0
Steam at a velocity of $$10$$ $$m/s$$ enters the impulse turbine stage with symmetrical blading having blade angle $${30^ \circ }.$$ The enthalpy drop in the stage is $$100kJ.$$ The nozzle angle is $${20^ \circ }.$$ The maximum blade efficiency (in percent) is ____________.
Your input ____
3
GATE ME 2014 Set 3
Numerical
+2
-0
At the inlet of an axial impulse turbine rotor, the blade linear speed is 25 m/s, the magnitude of absolute velocity is 100 m/s and the angle between them is 25°. The relative velocity and the axial component of velocity remain the same between the inlet and outlet of the blades. The blade inlet and outlet velocity triangles are shown in the figure. Assuming no losses, the specific work (in J/kg) is ____________.
Your input ____
4
GATE ME 2014 Set 1
Numerical
+2
-0
An ideal reheat Rankine cycle operates between the pressure limits of $$10$$ $$kPa$$ and $$8$$ $$MPa,$$ with reheat being done at $$4$$ $$MPa.$$ The temperature of steam at the inlets of both turbines is $${500^ \circ }C$$ and the enthalpy of steam is $$3185$$ $$kJ/kg$$ at the exit of the high pressure turbine and $$2247$$ $$kJ/kg$$ at the exit of low pressure turbine. The enthalpy of water at the exit from the pump is $$191$$ $$kJ/kg$$. Use the following table for relevant data.
Disregarding the pump work, the cycle efficiency (in percentage ) is ________________
Your input ____
Questions Asked from Rankine Cycle (Marks 2)
Number in Brackets after Paper Indicates No. of Questions
GATE ME 2022 Set 1 (1)
GATE ME 2017 Set 2 (1)
GATE ME 2016 Set 1 (1)
GATE ME 2015 Set 2 (1)
GATE ME 2015 Set 1 (1)
GATE ME 2014 Set 4 (1)
GATE ME 2014 Set 2 (1)
GATE ME 2014 Set 3 (1)
GATE ME 2014 Set 1 (1)
GATE ME 2011 (1)
GATE ME 2010 (2)
GATE ME 2009 (2)
GATE ME 2008 (1)
GATE ME 2007 (1)
GATE ME 2006 (2)
GATE ME 2005 (1)
GATE ME 2004 (2)
GATE ME 2003 (1)
GATE ME 2002 (1)
GATE ME 2000 (1)
GATE ME 1998 (1)
GATE ME 1997 (3)
GATE ME 1996 (1)
GATE ME 1993 (1)
GATE ME 1992 (4)
GATE ME 1991 (2)
GATE ME 1990 (2)
GATE ME 1989 (2)
GATE ME Subjects
Engineering Mechanics
Strength of Materials
Theory of Machines
Engineering Mathematics
Machine Design
Fluid Mechanics
Turbo Machinery
Heat Transfer
Thermodynamics
Production Engineering
Industrial Engineering
General Aptitude