1
GATE ME 2015 Set 3
MCQ (Single Correct Answer)
+2
-0.6
For a given matrix $$P = \left[ {\matrix{ {4 + 3i} & { - i} \cr i & {4 - 3i} \cr } } \right],$$ where $$i = \sqrt { - 1} ,$$ the inverse of matrix $$P$$ is
A
$${1 \over {24}}\left[ {\matrix{ {4 - 3i} & i \cr { - i} & {4 + 3i} \cr } } \right]$$
B
$${1 \over {25}}\left[ {\matrix{ i & {4 - 3i} \cr {4 + 3i} & i \cr } } \right]$$
C
$${1 \over {24}}\left[ {\matrix{ {4 + 3i} & { - i} \cr i & {4 - 3i} \cr } } \right]$$
D
$${1 \over {25}}\left[ {\matrix{ {4 + 3i} & { - i} \cr i & {4 - 3i} \cr } } \right]$$
2
GATE ME 2013
MCQ (Single Correct Answer)
+2
-0.6
Choose the CORRECT set of functions, which are linearly dependent.
A
$$\sin x,\,{\sin ^2}x$$ and $${\cos ^2}x$$
B
$$\cos x,\sin x$$ and $$\tan x$$
C
$$\cos \,2x,{\sin ^2}x$$ and $${\cos ^2}x$$
D
$$\cos \,2x,\sin x$$ and $$\cos x$$
3
GATE ME 2012
MCQ (Single Correct Answer)
+2
-0.6
$$x+2y+z=4, 2x+y+2z=5, x-y+z=1$$
The system of algebraic equations given above has
A
a unique solution of $$x=1,y=1$$ and $$z=1$$
B
only the two solutions of $$x=1, y=1, z=1$$ and $$x=2, y=1, z=0$$
C
infinite number of solutions.
D
no feasible solution.
4
GATE ME 2008
MCQ (Single Correct Answer)
+2
-0.6
The eigen vectors of the matrix $$\left[ {\matrix{ 1 & 2 \cr 0 & 2 \cr } } \right]$$ are written in the form $$\left[ {\matrix{ 1 \cr a \cr } } \right]\,\,\& \,\,\left[ {\matrix{ 1 \cr b \cr } } \right].$$ What is $$a+b$$?
A
$$0$$
B
$${1 \over 2}$$
C
$$1$$
D
$$2$$
GATE ME Subjects
Turbo Machinery
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12