1
GATE ME 2012
MCQ (Single Correct Answer)
+2
-0.6
$$x+2y+z=4, 2x+y+2z=5, x-y+z=1$$
The system of algebraic equations given above has
A
a unique solution of $$x=1,y=1$$ and $$z=1$$
B
only the two solutions of $$x=1, y=1, z=1$$ and $$x=2, y=1, z=0$$
C
infinite number of solutions.
D
no feasible solution.
2
GATE ME 2008
MCQ (Single Correct Answer)
+2
-0.6
The eigen vectors of the matrix $$\left[ {\matrix{ 1 & 2 \cr 0 & 2 \cr } } \right]$$ are written in the form $$\left[ {\matrix{ 1 \cr a \cr } } \right]\,\,\& \,\,\left[ {\matrix{ 1 \cr b \cr } } \right].$$ What is $$a+b$$?
A
$$0$$
B
$${1 \over 2}$$
C
$$1$$
D
$$2$$
3
GATE ME 2006
MCQ (Single Correct Answer)
+2
-0.6
Eigen values of a matrix $$S = \left[ {\matrix{ 3 & 2 \cr 2 & 3 \cr } } \right]$$ are $$5$$ and $$1.$$ What are the eigen values of the matrix $${S^2} = SS?$$
A
$$1$$ and $$25$$
B
$$6,4$$
C
$$5,1$$
D
$$2,10$$
4
GATE ME 2006
MCQ (Single Correct Answer)
+2
-0.6
Multiplication of matrices $$E$$ and $$F$$ is $$G.$$ Matrices $$E$$ and $$G$$ are
$$E = \left[ {\matrix{ {\cos \theta } & { - sin\theta } & 0 \cr {sin\theta } & {\cos \theta } & 0 \cr 0 & 0 & 1 \cr } } \right]$$ and $$G = \left[ {\matrix{ 1 & 0 & 0 \cr 0 & 1 & 0 \cr 0 & 0 & 1 \cr } } \right]$$
What is the matrix $$F?$$
A
$$\left[ {\matrix{ {\cos \theta } & { - sin\theta } & 0 \cr {sin\theta } & {\cos \theta } & 0 \cr 0 & 0 & 1 \cr } } \right]$$
B
$$\left[ {\matrix{ {\cos \theta } & {\cos \theta } & 0 \cr { - \cos \theta } & {sin\theta } & 0 \cr 0 & 0 & 1 \cr } } \right]\,$$
C
$$\left[ {\matrix{ {\cos \theta } & { - sin\theta } & 0 \cr { - sin\theta } & {\cos \theta } & 0 \cr 0 & 0 & 1 \cr } } \right]\,$$
D
$$\left[ {\matrix{ {sin\theta } & { - \cos \theta } & 0 \cr {\cos \theta } & {sin\theta } & 0 \cr 0 & 0 & 1 \cr } } \right]$$
GATE ME Subjects
Turbo Machinery
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12