1
GATE ME 2022 Set 2
Numerical
+2
-0
If the sum and product of eigenvalues of a 2 × 2 real matrix $\begin{bmatrix}3&p\\\ p&q\end{bmatrix} $ are 4 and -1 respectively, then |p| is _______ (in integer).
Your input ____
2
GATE ME 2022 Set 1
MCQ (More than One Correct Answer)
+2
-0

The system of linear equations in real (x, y) given by

$\rm \begin{pmatrix} \rm x & \rm y \end{pmatrix} \begin{bmatrix} 2 & 5- 2 α \\\ α & 1 \end{bmatrix} = \rm \begin{pmatrix} \rm 0 & \rm 0 \end{pmatrix} $

involves a real parameter α and has infinitely many non-trivial solutions for special value(s) of α. Which one or more among the following options is/are non-trivial solution(s) of (x, y) for such special value(s) of α ?

A
x = 2, y = −2
B
x = −1, y = 4
C
x = 1, y = 1
D
x = 4, y = −2
3
GATE ME 2017 Set 2
Numerical
+2
-0
Consider the matrix $$A = \left[ {\matrix{ {50} & {70} \cr {70} & {80} \cr } } \right]$$ whose eigenvectors corresponding to eigen values $${\lambda _1}$$ and $${\lambda _2}$$ are $${x_1} = \left[ {\matrix{ {70} \cr {{\lambda _1} - 50} \cr } } \right]$$ and $${x_2} = \left[ {\matrix{ {{\lambda _2} - 80} \cr {70} \cr } } \right],$$ respectively. The value of $$x_1^T{x_2}$$ is ________
Your input ____
4
GATE ME 2016 Set 3
Numerical
+2
-0
The number of linear independent eigenvectors of matrix $$A = \left[ {\matrix{ 2 & 1 & 0 \cr 0 & 2 & 0 \cr 0 & 0 & 3 \cr } } \right]$$ is ________.
Your input ____
GATE ME Subjects
Turbo Machinery
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12