1
GATE EE 2005
MCQ (Single Correct Answer)
+2
-0.6
Consider the inverting amplifier, using an ideal operational amplifier shown in figure. The designer wishes to realize the input resistance seen by the small signal source to be as large as possible, while keeping the voltage gain between $$–10$$ and $$–25.$$ the upper limit on $${R_F}$$ is $$1\,M\Omega .$$ The value of $${R_1}$$ should be
2
GATE EE 2005
MCQ (Single Correct Answer)
+2
-0.6
In the given figure, if the input is a sinusoidal signal, the output-will appear as shown
3
GATE EE 2004
MCQ (Single Correct Answer)
+2
-0.6
In the active filter circuit shown in figure, if $$Q=1,$$ a pair of poles will be realized with $${\omega _0}$$ equal to
4
GATE EE 2004
MCQ (Single Correct Answer)
+2
-0.6
The input resistance $${R_{IN}}\left( { = {V_x}/{I_x}} \right)$$ of the circuit in the figure is
Questions Asked from Operational Amplifier (Marks 2)
Number in Brackets after Paper Indicates No. of Questions
GATE EE 2024 (1)
GATE EE 2023 (1)
GATE EE 2022 (2)
GATE EE 2017 Set 2 (1)
GATE EE 2017 Set 1 (1)
GATE EE 2015 Set 2 (1)
GATE EE 2015 Set 1 (1)
GATE EE 2014 Set 3 (2)
GATE EE 2014 Set 1 (2)
GATE EE 2013 (1)
GATE EE 2009 (2)
GATE EE 2008 (4)
GATE EE 2007 (2)
GATE EE 2006 (1)
GATE EE 2005 (2)
GATE EE 2004 (3)
GATE EE 2003 (1)
GATE EE 2002 (1)
GATE EE 2001 (2)
GATE EE 2000 (1)
GATE EE 1998 (1)
GATE EE 1997 (1)
GATE EE 1992 (2)
GATE EE 1991 (1)
GATE EE Subjects
Electromagnetic Fields
Signals and Systems
Engineering Mathematics
General Aptitude
Power Electronics
Power System Analysis
Analog Electronics
Control Systems
Digital Electronics
Electrical Machines
Electric Circuits