1
GATE EE 2000
Subjective
+5
-0
A $$275$$ $$kV,$$ $$3$$-phase, $$50$$ $$Hz,$$ $$400$$ $$km$$ lossless line has following parameters:
$$x=0.05$$ $$ohms/km,$$ line charging susceptance $$y=3.0$$ micro-Siemens/k.

(a) Calculate the receiving end voltage on open circuit using justifiable assumptions.

(b) What load at the receiving end will result in a flat voltage profile on the line?

(c) If the flat voltage profile is to be achieved at $$1.2$$ times the loading in (b), what will be the nature and quantum of uniformly distributed compensation required?

2
GATE EE 1999
Subjective
+5
-0
A 66 kV, 3-phase, 50 Hz, 150 km long overhead transmission line is open circuited at the receiving end. Each conductor has a resistance of 0.25$$\Omega $$/km, an inductive reactance of 0.5$$\Omega $$/km and a capacitive admittance to neutral of 0.04 $$ \times $$ 10-4 S/km.

(a) Draw the nominal π-equivalent circuit and indicate the value of each parameter.
(b) Calculate the receiving end voltage if the sending end voltage is 66 kV.

3
GATE EE 1999
Subjective
+5
-0
A 6.6 kV, 50 Hz single core lead sheathed cable has the following data:
Conductor diameter: 1.5 cm, length: 4 km. Internal diameter of the sheath : 3 cm
Resistivity of insulation : 1.3 $$ \times $$ 1012 $$\Omega $$-m. Relative permittivity of insulation : 3.5 Calculate

(a) the insulation resistance
(b) the capacitance and
(c) the maximum electric stress in the insulation

4
GATE EE 1998
Subjective
+5
-0
Each conductor of a $$33$$ $$kV,$$ $$3$$ phase system is suspended by a string of three similar insulators. The ratio of shunt capacitance to mutual capacitance is $$0.1.$$ Calculate the voltage across each insulator, and the string efficiency.
GATE EE Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12