1
IIT-JEE 2007
MCQ (Single Correct Answer)
+4
-1
If a continuous function $$f$$ defined on the real line $$R$$, assumes positive and negative values in $$R$$ then the equation $$f(x)=0$$ has a root in $$R$$. For example, if it is known that a continuous function $$f$$ on $$R$$ is positive at some point and its minimum value is negative then the equation $$f(x)=0$$ has a root in $$R$$.
Consider $$f\left( x \right) = k{e^x} - x$$ for all real $$x$$ where $$k$$ is real constant.

For $$k>0$$, the set of all values of $$k$$ for which $$k{e^x} - x = 0$$ has two distinct roots is

A
$$\left( {0,{1 \over e}} \right)$$
B
$$\left( {{1 \over e},1} \right)$$
C
$$\left( {{1 \over e},\infty } \right)$$
D
$$\left( {0,1} \right)$$
2
IIT-JEE 2007
MCQ (Single Correct Answer)
+3
-0.75
Let $$F(x)$$ be an indefinite integral of $$si{n^2}x.$$

STATEMENT-1: The function $$F(x)$$ satisfies $$F\left( {x + \pi } \right) = F\left( x \right)$$
for all real $$x$$. because

STATEMENT-2: $${\sin ^2}\left( {x + \pi } \right) = {\sin ^2}x$$ for all real $$x$$.

A
Statement-1 is True, Statement-2 is True; Statement-2 is is a correct explanation for Statement-1.
B
Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1.
C
Statement- 1 is True, Statement-2 is False.
D
Statement-1 is False, Statement-2 is True.
3
IIT-JEE 2007
Subjective
+6
-0
Match the integrals in Column $$I$$ with the values in Column $$II$$ and indicate your answer by darkening the appropriate bubbles in the $$4 \times 4$$ matrix given in the $$ORS$$.

Column $$I$$
(A) $$\int\limits_{ - 1}^1 {{{dx} \over {1 + {x^2}}}} $$
(B) $$\int\limits_0^1 {{{dx} \over {\sqrt {1 - {x^2}} }}} $$
(C) $$\int\limits_2^3 {{{dx} \over {1 - {x^2}}}} $$
(D) $$\int\limits_1^2 {{{dx} \over {x\sqrt {{x^2} - 1} }}} $$

Column $$II$$
(p) $${1 \over 2}\log \left( {{2 \over 3}} \right)$$
(q) $$2\log \left( {{2 \over 3}} \right)$$
(r) $${{\pi \over 3}}$$
(s) $${{\pi \over 2}}$$

4
IIT-JEE 2007
MCQ (Single Correct Answer)
+3
-0.75
One Indian and four American men and their wives are to be seated randomly around a circular table. Then the conditional probability that the Indian man is seated adjacent to his wife given that each American man is seated adjacent to his wife is
A
$${1 \over 2}$$
B
$${1 \over 3}$$
C
$${2 \over 5}$$
D
$${1 \over 5}$$
JEE Advanced Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12