1
IIT-JEE 2007
MCQ (Single Correct Answer)
+4
-1
If a continuous function $$f$$ defined on the real line $$R$$, assumes positive and negative values in $$R$$ then the equation $$f(x)=0$$ has a root in $$R$$. For example, if it is known that a continuous function $$f$$ on $$R$$ is positive at some point and its minimum value is negative then the equation $$f(x)=0$$ has a root in $$R$$.
Consider $$f\left( x \right) = k{e^x} - x$$ for all real $$x$$ where $$k$$ is real constant.

For $$k>0$$, the set of all values of $$k$$ for which $$k{e^x} - x = 0$$ has two distinct roots is

A
$$\left( {0,{1 \over e}} \right)$$
B
$$\left( {{1 \over e},1} \right)$$
C
$$\left( {{1 \over e},\infty } \right)$$
D
$$\left( {0,1} \right)$$
2
IIT-JEE 2007
MCQ (Single Correct Answer)
+3
-0.75
Let $$F(x)$$ be an indefinite integral of $$si{n^2}x.$$

STATEMENT-1: The function $$F(x)$$ satisfies $$F\left( {x + \pi } \right) = F\left( x \right)$$
for all real $$x$$. because

STATEMENT-2: $${\sin ^2}\left( {x + \pi } \right) = {\sin ^2}x$$ for all real $$x$$.

A
Statement-1 is True, Statement-2 is True; Statement-2 is is a correct explanation for Statement-1.
B
Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1.
C
Statement- 1 is True, Statement-2 is False.
D
Statement-1 is False, Statement-2 is True.
3
IIT-JEE 2007
Subjective
+6
-0
Match the integrals in Column $$I$$ with the values in Column $$II$$ and indicate your answer by darkening the appropriate bubbles in the $$4 \times 4$$ matrix given in the $$ORS$$.

Column $$I$$
(A) $$\int\limits_{ - 1}^1 {{{dx} \over {1 + {x^2}}}} $$
(B) $$\int\limits_0^1 {{{dx} \over {\sqrt {1 - {x^2}} }}} $$
(C) $$\int\limits_2^3 {{{dx} \over {1 - {x^2}}}} $$
(D) $$\int\limits_1^2 {{{dx} \over {x\sqrt {{x^2} - 1} }}} $$

Column $$II$$
(p) $${1 \over 2}\log \left( {{2 \over 3}} \right)$$
(q) $$2\log \left( {{2 \over 3}} \right)$$
(r) $${{\pi \over 3}}$$
(s) $${{\pi \over 2}}$$

4
IIT-JEE 2007
MCQ (Single Correct Answer)
+3
-0.75
One Indian and four American men and their wives are to be seated randomly around a circular table. Then the conditional probability that the Indian man is seated adjacent to his wife given that each American man is seated adjacent to his wife is
A
$${1 \over 2}$$
B
$${1 \over 3}$$
C
$${2 \over 5}$$
D
$${1 \over 5}$$
JEE Advanced Papers
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
CBSE
Class 12