1
IIT-JEE 2005
Subjective
+2
-0
A person goes to office either by car, scooter, bus or train, the probability of which being $${1 \over 7},{3 \over 7},{2 \over 7}$$ and $${1 \over 7}$$ respectively. Probability that he reaches office late, if he takes car, scooter, bus or train is $${2 \over 9},{1 \over 9},{4 \over 9}$$ and $${1 \over 9}$$ respectively. Given that he reached office in time, then what is the probability that he travelled by a car.
2
IIT-JEE 2005
Subjective
+4
-0
If length of tangent at any point on the curve $$y=f(x)$$ intecepted between the point and the $$x$$-axis is length $$1.$$ Find the equation of the curve.
3
IIT-JEE 2005
Subjective
+6
-0
$$f(x)$$ is a differentiable function and $$g(x)$$ is a double differentiable
function such that $$\left| {f\left( x \right)} \right| \le 1$$ and $$f'(x)=g(x).$$
If $${f^2}\left( 0 \right) + {g^2}\left( 0 \right) = 9.$$ Prove that there exists some $$c \in \left( { - 3,3} \right)$$
such that $$g(c).g''(c)<0.$$
function such that $$\left| {f\left( x \right)} \right| \le 1$$ and $$f'(x)=g(x).$$
If $${f^2}\left( 0 \right) + {g^2}\left( 0 \right) = 9.$$ Prove that there exists some $$c \in \left( { - 3,3} \right)$$
such that $$g(c).g''(c)<0.$$
4
IIT-JEE 2005
Subjective
+6
-0
If $$\left[ {\matrix{
{4{a^2}} & {4a} & 1 \cr
{4{b^2}} & {4b} & 1 \cr
{4{c^2}} & {4c} & 1 \cr
} } \right]\left[ {\matrix{
{f\left( { - 1} \right)} \cr
{f\left( 1 \right)} \cr
{f\left( 2 \right)} \cr
} } \right] = \left[ {\matrix{
{3{a^2} + 3a} \cr
{3{b^2} + 3b} \cr
{3{c^2} + 3c} \cr
} } \right],\,\,f\left( x \right)$$ is a quadratic
function and its maximum value occurs at a point $$V$$. $$A$$ is a point of intersection of $$y=f(x)$$ with $$x$$-axis and point $$B$$ is such that chord $$AB$$ subtends a right angle at $$V$$. Find the area enclosed by $$f(x)$$ and chord $$AB$$.
function and its maximum value occurs at a point $$V$$. $$A$$ is a point of intersection of $$y=f(x)$$ with $$x$$-axis and point $$B$$ is such that chord $$AB$$ subtends a right angle at $$V$$. Find the area enclosed by $$f(x)$$ and chord $$AB$$.
Paper analysis
Total Questions
Chemistry
3
Mathematics
18
Physics
1
More papers of JEE Advanced
JEE Advanced 2024 Paper 2 Online
JEE Advanced 2024 Paper 1 Online
JEE Advanced 2023 Paper 2 Online
JEE Advanced 2023 Paper 1 Online
JEE Advanced 2022 Paper 2 Online
JEE Advanced 2022 Paper 1 Online
JEE Advanced 2021 Paper 2 Online
JEE Advanced 2021 Paper 1 Online
JEE Advanced 2020 Paper 2 Offline
JEE Advanced 2020 Paper 1 Offline
JEE Advanced 2019 Paper 2 Offline
JEE Advanced 2019 Paper 1 Offline
JEE Advanced 2018 Paper 2 Offline
JEE Advanced 2018 Paper 1 Offline
JEE Advanced 2017 Paper 2 Offline
JEE Advanced 2017 Paper 1 Offline
JEE Advanced 2016 Paper 2 Offline
JEE Advanced 2016 Paper 1 Offline
JEE Advanced 2015 Paper 2 Offline
JEE Advanced 2015 Paper 1 Offline
JEE Advanced 2014 Paper 2 Offline
JEE Advanced 2014 Paper 1 Offline
JEE Advanced 2013 Paper 2 Offline
JEE Advanced 2013 Paper 1 Offline
IIT-JEE 2012 Paper 2 Offline
IIT-JEE 2012 Paper 1 Offline
IIT-JEE 2011 Paper 1 Offline
IIT-JEE 2011 Paper 2 Offline
IIT-JEE 2010 Paper 1 Offline
IIT-JEE 2010 Paper 2 Offline
IIT-JEE 2009 Paper 2 Offline
IIT-JEE 2009 Paper 1 Offline
IIT-JEE 2008 Paper 2 Offline
IIT-JEE 2008 Paper 1 Offline
IIT-JEE 2007
IIT-JEE 2007 Paper 2 Offline
IIT-JEE 2006
IIT-JEE 2006 Screening
IIT-JEE 2005 Screening
IIT-JEE 2005
IIT-JEE 2004 Screening
IIT-JEE 2004
IIT-JEE 2003 Screening
IIT-JEE 2003
IIT-JEE 2002 Screening
IIT-JEE 2002
IIT-JEE 2001 Screening
IIT-JEE 2001
IIT-JEE 2000 Screening
IIT-JEE 2000
IIT-JEE 1999 Screening
IIT-JEE 1999
IIT-JEE 1998 Screening
IIT-JEE 1998
IIT-JEE 1997
IIT-JEE 1996
IIT-JEE 1995 Screening
IIT-JEE 1995
IIT-JEE 1994
IIT-JEE 1993
IIT-JEE 1992
IIT-JEE 1991
IIT-JEE 1990
IIT-JEE 1989
IIT-JEE 1988
IIT-JEE 1987
IIT-JEE 1986
IIT-JEE 1985
IIT-JEE 1984
IIT-JEE 1983
IIT-JEE 1982
IIT-JEE 1981
IIT-JEE 1980
IIT-JEE 1979
IIT-JEE 1978
JEE Advanced
Papers
2020
2019
2018
2017
2016
1997
1996
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978