1
IIT-JEE 2005
Subjective
+2
-0
A person goes to office either by car, scooter, bus or train, the probability of which being $${1 \over 7},{3 \over 7},{2 \over 7}$$ and $${1 \over 7}$$ respectively. Probability that he reaches office late, if he takes car, scooter, bus or train is $${2 \over 9},{1 \over 9},{4 \over 9}$$ and $${1 \over 9}$$ respectively. Given that he reached office in time, then what is the probability that he travelled by a car.
2
IIT-JEE 2005
Subjective
+4
-0
If length of tangent at any point on the curve $$y=f(x)$$ intecepted between the point and the $$x$$-axis is length $$1.$$ Find the equation of the curve.
3
IIT-JEE 2005
Subjective
+6
-0
$$f(x)$$ is a differentiable function and $$g(x)$$ is a double differentiable
function such that $$\left| {f\left( x \right)} \right| \le 1$$ and $$f'(x)=g(x).$$
If $${f^2}\left( 0 \right) + {g^2}\left( 0 \right) = 9.$$ Prove that there exists some $$c \in \left( { - 3,3} \right)$$
such that $$g(c).g''(c)<0.$$
4
IIT-JEE 2005
Subjective
+6
-0
If $$\left[ {\matrix{ {4{a^2}} & {4a} & 1 \cr {4{b^2}} & {4b} & 1 \cr {4{c^2}} & {4c} & 1 \cr } } \right]\left[ {\matrix{ {f\left( { - 1} \right)} \cr {f\left( 1 \right)} \cr {f\left( 2 \right)} \cr } } \right] = \left[ {\matrix{ {3{a^2} + 3a} \cr {3{b^2} + 3b} \cr {3{c^2} + 3c} \cr } } \right],\,\,f\left( x \right)$$ is a quadratic
function and its maximum value occurs at a point $$V$$. $$A$$ is a point of intersection of $$y=f(x)$$ with $$x$$-axis and point $$B$$ is such that chord $$AB$$ subtends a right angle at $$V$$. Find the area enclosed by $$f(x)$$ and chord $$AB$$.
JEE Advanced Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12