1
IIT-JEE 2004 Screening
+2
-0.5
If one root is square of the other root of the equation $${x^2} + px + q = 0$$, then the realation between $$p$$ and $$q$$ is
A
$${p^3} - q\left( {3p - 1} \right) + {q^2} = 0$$
B
$${p^3} - q\left( {3p + 1} \right) + {q^2} = 0$$
C
$${p^3} + q\left( {3p - 1} \right) + {q^2} = 0$$
D
$${p^3} + q\left( {3p + 1} \right) + {q^2} = 0$$
2
IIT-JEE 2004 Screening
+2
-0.5
For all $$'x',{x^2} + 2ax + 10 - 3a > 0,$$ then the interval in which '$$a$$' lies is
A
$$a < - 5$$
B
$$- 5 < a < 2$$
C
$$a > 5$$
D
$$2 < a < 5$$
3
IIT-JEE 2004 Screening
+2
-0.5
If $${}^{n - 1}{C_r} = \left( {{k^2} - 3} \right)\,{}^n{C_{r + 1,}}$$ then $$k \in$$
A
$$\left( { - \infty , - 2} \right)$$
B
$$\left[ {2,\infty } \right)$$
C
$$\left[ { - \sqrt 3 ,\sqrt 3 } \right]$$
D
$$\left( {\sqrt 3 ,2} \right]$$
4
IIT-JEE 2004 Screening
+2
-0.5
An infinite G.P. has first term '$$x$$' and sum '$$5$$', then $$x$$ belongs to
A
$$x < - 10$$
B
$$- 10 < x < 0$$
C
$$0 < x < 10$$
D
$$x > 10$$
EXAM MAP
Medical
NEET