1
IIT-JEE 2001
Subjective
+10
-0
The standard potential of the following cell is 0.23V at 15oC and 0.21 V at 35oC.
Pt | H2 (g) | HCl (aq) | AgCl (s) | Ag (s)
(i) Write the cell reaction.
(ii) Calculate $$\Delta H^o$$ and $$\Delta S^o$$m for the cell reaction by assuming that these quantities remain unchanged in the range 15oC to 35oC.
(iii) Calculate the solubility of AgCl in water at 25oC
Given : The standard reduction potential of the Ag+ (aq) / Ag (s) couple is 0.80 V at 25oC
Pt | H2 (g) | HCl (aq) | AgCl (s) | Ag (s)
(i) Write the cell reaction.
(ii) Calculate $$\Delta H^o$$ and $$\Delta S^o$$m for the cell reaction by assuming that these quantities remain unchanged in the range 15oC to 35oC.
(iii) Calculate the solubility of AgCl in water at 25oC
Given : The standard reduction potential of the Ag+ (aq) / Ag (s) couple is 0.80 V at 25oC
2
IIT-JEE 2001
Subjective
+5
-0
Hydrogen peroxide solution (20 ml) reacts quantitatively with a solution of KMnO4 solution is just decolourised by 10 ml of MnSO4 in neutral medium simultaneously forming a dark brown precipitate of hydrated MnO2. The brown precipitated is dissolved in 10 ml of 0.2 M sodium oxalate under boiling condition in the presence of dilute H2SO4. Write the balanced equations involved in the reactions and calculate the molarity of H2O2.
3
IIT-JEE 2001
Subjective
+5
-0
Let $${a_1}$$, $${a_2}$$,.....,$${a_n}$$ be positive real numbers in geometric progression. For each n, let $${A_n}$$, $${G_n}$$, $${H_n}$$ be respectively, the arithmetic mean , geometric mean, and harmonic mean of $${a_1}$$,$${a_2}$$......,$${a_n}$$. Find an expression for the geometric mean of $${G_1}$$,$${G_2}$$,.....,$${G_n}$$ in terms of $${A_1}$$,$${A_2}$$,.....,$${A_n}$$,$${H_n}$$,$${H_1}$$,$${H_2}$$,........,$${H_n}$$.
4
IIT-JEE 2001
Subjective
+5
-0
Let $$\overrightarrow A \left( t \right) = {f_1}\left( t \right)\widehat i + {f_2}\left( t \right)\widehat j$$ and
$$$\overrightarrow B \left( t \right) = {g_1}\left( t \right)\overrightarrow i + {g_2}\left( t \right)\widehat j,t \in \left[ {0,1} \right],$$$
where $${f_1},{f_2},{g_1},{g_2}$$ are continuous functions. If $$\overrightarrow A \left( t \right)$$ and $$\overrightarrow B \left( t \right)$$ are nonzero vectors for all $$t$$ and $$\overrightarrow A \left( 0 \right) = 2\widehat i + 3\widehat j,$$ $$\,\overrightarrow A \left( 1 \right) = 6\widehat i + 2\widehat j,$$ $$\,\overrightarrow B \left( 0 \right) = 3\widehat i + 2\widehat j$$ and $$\,\overrightarrow B \left( 1 \right) = 2\widehat i + 6\widehat j.$$ Then show that $$\,\overrightarrow A \left( t \right)$$ and $$\,\overrightarrow B \left( t \right)$$ are parallel for some $$t.$$
where $${f_1},{f_2},{g_1},{g_2}$$ are continuous functions. If $$\overrightarrow A \left( t \right)$$ and $$\overrightarrow B \left( t \right)$$ are nonzero vectors for all $$t$$ and $$\overrightarrow A \left( 0 \right) = 2\widehat i + 3\widehat j,$$ $$\,\overrightarrow A \left( 1 \right) = 6\widehat i + 2\widehat j,$$ $$\,\overrightarrow B \left( 0 \right) = 3\widehat i + 2\widehat j$$ and $$\,\overrightarrow B \left( 1 \right) = 2\widehat i + 6\widehat j.$$ Then show that $$\,\overrightarrow A \left( t \right)$$ and $$\,\overrightarrow B \left( t \right)$$ are parallel for some $$t.$$
Paper analysis
Total Questions
Chemistry
4
Mathematics
16
Physics
1
More papers of JEE Advanced
JEE Advanced 2024 Paper 2 Online
JEE Advanced 2024 Paper 1 Online
JEE Advanced 2023 Paper 2 Online
JEE Advanced 2023 Paper 1 Online
JEE Advanced 2022 Paper 2 Online
JEE Advanced 2022 Paper 1 Online
JEE Advanced 2021 Paper 2 Online
JEE Advanced 2021 Paper 1 Online
JEE Advanced 2020 Paper 2 Offline
JEE Advanced 2020 Paper 1 Offline
JEE Advanced 2019 Paper 2 Offline
JEE Advanced 2019 Paper 1 Offline
JEE Advanced 2018 Paper 2 Offline
JEE Advanced 2018 Paper 1 Offline
JEE Advanced 2017 Paper 2 Offline
JEE Advanced 2017 Paper 1 Offline
JEE Advanced 2016 Paper 2 Offline
JEE Advanced 2016 Paper 1 Offline
JEE Advanced 2015 Paper 2 Offline
JEE Advanced 2015 Paper 1 Offline
JEE Advanced 2014 Paper 2 Offline
JEE Advanced 2014 Paper 1 Offline
JEE Advanced 2013 Paper 2 Offline
JEE Advanced 2013 Paper 1 Offline
IIT-JEE 2012 Paper 2 Offline
IIT-JEE 2012 Paper 1 Offline
IIT-JEE 2011 Paper 1 Offline
IIT-JEE 2011 Paper 2 Offline
IIT-JEE 2010 Paper 1 Offline
IIT-JEE 2010 Paper 2 Offline
IIT-JEE 2009 Paper 2 Offline
IIT-JEE 2009 Paper 1 Offline
IIT-JEE 2008 Paper 2 Offline
IIT-JEE 2008 Paper 1 Offline
IIT-JEE 2007
IIT-JEE 2007 Paper 2 Offline
IIT-JEE 2006
IIT-JEE 2006 Screening
IIT-JEE 2005 Screening
IIT-JEE 2005
IIT-JEE 2004 Screening
IIT-JEE 2004
IIT-JEE 2003 Screening
IIT-JEE 2003
IIT-JEE 2002 Screening
IIT-JEE 2002
IIT-JEE 2001 Screening
IIT-JEE 2001
IIT-JEE 2000 Screening
IIT-JEE 2000
IIT-JEE 1999 Screening
IIT-JEE 1999
IIT-JEE 1998 Screening
IIT-JEE 1998
IIT-JEE 1997
IIT-JEE 1996
IIT-JEE 1995 Screening
IIT-JEE 1995
IIT-JEE 1994
IIT-JEE 1993
IIT-JEE 1992
IIT-JEE 1991
IIT-JEE 1990
IIT-JEE 1989
IIT-JEE 1988
IIT-JEE 1987
IIT-JEE 1986
IIT-JEE 1985
IIT-JEE 1984
IIT-JEE 1983
IIT-JEE 1982
IIT-JEE 1981
IIT-JEE 1980
IIT-JEE 1979
IIT-JEE 1978
JEE Advanced
Papers
2020
2019
2018
2017
2016
1997
1996
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978