1
IIT-JEE 1995
Subjective
+5
-0
Evaluate the definite integral : $$$\int\limits_{ - 1/\sqrt 3 }^{1/\sqrt 3 } {\left( {{{{x^4}} \over {1 - {x^4}}}} \right){{\cos }^{ - 1}}\left( {{{2x} \over {1 + {x^2}}}} \right)} dx$$$
2
IIT-JEE 1995
Subjective
+5
-0
Let $${I_m} = \int\limits_0^\pi {{{1 - \cos mx} \over {1 - \cos x}}} dx.$$ Use mathematical induction to prove that $${I_m} = m\,\pi ,m = 0,1,2,........$$
3
IIT-JEE 1995
MCQ (Single Correct Answer)
+2
-0.5
The minimum value of the expression $$\sin \,\alpha + \sin \,\beta \, + \sin \,\gamma ,\,$$ where $$\alpha ,\,\beta ,\,\gamma $$ are real numbers satisfying $$\alpha + \beta + \gamma = \pi $$ is
A
positive
B
zero
C
negative
D
-3
4
IIT-JEE 1995
Subjective
+5
-0
Let '$$d$$' be the perpendicular distance from the centre of the ellipse $${{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1$$ to the tangent drawn at a point $$P$$ on the ellipse. If $${F_1}$$ and $${F_2}$$ are the two foci of the ellipse, then show that $${\left( {P{F_1} - P{F_2}} \right)^2} = 4{a^2}\left( {1 - {{{b^2}} \over {{d^2}}}} \right)$$.
JEE Advanced Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12