IIT-JEE 1995 Screening
Paper was held on Tue, Apr 11, 1995 9:00 AM
View Questions

Chemistry

Mathematics

1
If $$f\left( x \right)\,\,\, = \,\,\,A\sin \left( {{{\pi x} \over 2}} \right)\,\,\, + \,\,\,B,\,\,\,f'\left( {{1 \over 2}} \right) = \sqrt 2 $$ and
$$\int\limits_0^1 {f\left( x \right)dx = {{2A} \over \pi },} $$ then constants $$A$$ and $$B$$ are
2
If $$\overrightarrow a ,$$ $$\overrightarrow b $$ and $$\overrightarrow c $$ are three non coplanar vectors, then
$$\left( {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right).\left[ {\left( {\overrightarrow a + \overrightarrow b } \right) \times \left( {\overrightarrow a + \overrightarrow c } \right)} \right]$$ equals
3
Let $$\overrightarrow u ,\overrightarrow v $$ and $$\overrightarrow w $$ be vectors such that $$\overrightarrow u + \overrightarrow v + \overrightarrow w = 0.$$ If $$\left| {\overrightarrow u } \right| = 3,\left| {\overrightarrow v } \right| = 4$$ and $$\left| {\overrightarrow w } \right| = 5,$$ then $$\overrightarrow u .\overrightarrow v + \overrightarrow v .\overrightarrow w + \overrightarrow w .\overrightarrow u $$ is
4
If $$\overrightarrow a ,\overrightarrow b ,\overrightarrow c $$ are non coplanar unit vectors such that $$\overrightarrow a \times \left( {\overrightarrow b \times \overrightarrow c } \right) = {{\left( {\overrightarrow b + \overrightarrow c } \right)} \over {\sqrt 2 }},\,\,$$ then the angle between $$\overrightarrow a $$ and $$\overrightarrow b $$ is
5
Let $$\overrightarrow a = \widehat i - \widehat j,\overrightarrow b = \widehat j - \widehat k,\overrightarrow c = \widehat k - \widehat i.$$ If $$\overrightarrow d $$ is a unit vector such that $$\overrightarrow a .\overrightarrow d = 0 = \left[ {\overrightarrow b \overrightarrow c \overrightarrow d } \right],$$ then $$\overrightarrow d $$ equals
6
Let $$0 < P\left( A \right) < 1,0 < P\left( B \right) < 1$$ and
$$P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( A \right)P\left( B \right)$$ then
7
The probability of India winning a test match against West Indies is $$1/2$$. Assuming independence from match to match the probability that in a $$5$$ match series India's second win occurs at third test is
8
Three of six vertices of a regular hexagon are chosen at random. The probability that the triangle with three vertices is equilateral, equals
9
$$\,3{\left( {\sin x - \cos x} \right)^4} + 6{\left( {\sin x + \cos x} \right)^2} + 4\left( {{{\sin }^6}x + {{\cos }^6}x} \right) = $$
10
The value of $$\int\limits_\pi ^{2\pi } {\left[ {2\,\sin x} \right]\,dx} $$ where [ . ] represents the greatest integer function is
11
The value of the integral $$\int {{{{{\cos }^3}x + {{\cos }^5}x} \over {{{\sin }^2}x + {{\sin }^4}x}}} \,dx\,$$ is
12
The slope of the tangent to a curve $$y = f\left( x \right)$$ at $$\left[ {x,\,f\left( x \right)} \right]$$ is $$2x+1$$. If the curve passes through the point $$\left( {1,2} \right)$$, then the area bounded by the curve, the $$x$$-axis and the line $$x=1$$ is
13
On the interval $$\left[ {0,1} \right]$$ the function $${x^{25}}{\left( {1 - x} \right)^{75}}$$ takes its maximum value at the point
14
The function $$f\left( x \right) = {{in\,\left( {\pi + x} \right)} \over {in\,\left( {e + x} \right)}}$$ is
15
In a triangle $$ABC$$, $$\angle B = {\pi \over 3}$$ and $$\angle C = {\pi \over 4}$$. Let $$D$$ divide $$BC$$ internally in the ratio $$1:3$$ then $${{\sin \angle BAD} \over {\sin \angle CAD}}$$ is equal to
16
The radius of the circle passing through the foci of the ellipse $${{{x^2}} \over {16}} + {{{y^2}} \over 9} = 1$$, and having its centre at $$(0, 3)$$ is
17
Consider a circle with its centre lying on the focus of the parabola $${y^2} = 2px$$ such that it touches the directrix of the parabola. Then a point of intersection of the circle and parabola is
18
Let $$z$$ and $$\omega $$ be two non zero complex numbers such that
$$\left| z \right| = \left| \omega \right|$$ and $${\rm A}rg\,z + {\rm A}rg\,\omega = \pi ,$$ then $$z$$ equals
19
If $$\omega \,\left( { \ne 1} \right)$$ is a cube root of unity and $${\left( {1 + \omega } \right)^7} = A + B\,\omega $$ then $$A$$ and $$B$$ are respectively
20
Let $$z$$ and $$\omega $$ be two complex numbers such that
$$\left| z \right| \le 1,$$ $$\left| \omega \right| \le 1$$ and $$\left| {z + i\omega } \right| = \left| {z - i\overline \omega } \right| = 2$$ then $$z$$ equals
21
The general values of $$\theta $$ satisfying the equation $$2{\sin ^2}\theta - 3\sin \theta - 2 = 0$$ is

Physics

EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12