1
IIT-JEE 1982
Subjective
+2
-0
$$A$$ and $$B$$ are two candidates seeking admission in $$IIT.$$ The probability that $$A$$ is selected is $$0.5$$ and the probability that both $$A$$ and $$B$$ are selected is atmost $$0.3$$. Is it possible that the probability of $$B$$ getting selected is $$0.9$$ ?
2
IIT-JEE 1982
MCQ (Single Correct Answer)
+2
-0.5
For non-zero vectors $${\overrightarrow a ,\,\overrightarrow b ,\overrightarrow c },$$ $$\left| {\left( {\overrightarrow a \times \overrightarrow b } \right).\overrightarrow c } \right| = \left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\left| {\overrightarrow c } \right|$$ holds if and only if
3
IIT-JEE 1982
Subjective
+2
-0
$${A_1},{A_2},.................{A_n}$$ are the vertices of a regular plane polygon with $$n$$ sides and $$O$$ is its centre. Show that
$$\sum\limits_{i = 1}^{n - 1} {\left( {\overrightarrow {O{A_i}} \times {{\overrightarrow {OA} }_{i + 1}}} \right) = \left( {1 - n} \right)\left( {{{\overrightarrow {OA} }_2} \times {{\overrightarrow {OA} }_1}} \right)} $$
$$\sum\limits_{i = 1}^{n - 1} {\left( {\overrightarrow {O{A_i}} \times {{\overrightarrow {OA} }_{i + 1}}} \right) = \left( {1 - n} \right)\left( {{{\overrightarrow {OA} }_2} \times {{\overrightarrow {OA} }_1}} \right)} $$
4
IIT-JEE 1982
Subjective
+3
-0
Find all values of $$\lambda $$ such that $$x, y, z,$$$$\, \ne $$$$(0,0,0)$$ and
$$\left( {\overrightarrow i + \overrightarrow j + 3\overrightarrow k } \right)x + \left( {3\overrightarrow i - 3\overrightarrow j + \overrightarrow k } \right)y + \left( { - 4\overrightarrow i + 5\overrightarrow j } \right)z$$
$$ = \lambda \left( {x\overrightarrow i \times \overrightarrow j \,\,y + \overrightarrow k \,z} \right)$$ where $$\overrightarrow i ,\,\,\overrightarrow j ,\,\,\overrightarrow k $$ are unit vectors along the coordinate axes.
$$\left( {\overrightarrow i + \overrightarrow j + 3\overrightarrow k } \right)x + \left( {3\overrightarrow i - 3\overrightarrow j + \overrightarrow k } \right)y + \left( { - 4\overrightarrow i + 5\overrightarrow j } \right)z$$
$$ = \lambda \left( {x\overrightarrow i \times \overrightarrow j \,\,y + \overrightarrow k \,z} \right)$$ where $$\overrightarrow i ,\,\,\overrightarrow j ,\,\,\overrightarrow k $$ are unit vectors along the coordinate axes.
Paper analysis
Total Questions
Chemistry
19
Mathematics
39
Physics
3
More papers of JEE Advanced
JEE Advanced 2024 Paper 2 Online
JEE Advanced 2024 Paper 1 Online
JEE Advanced 2023 Paper 2 Online
JEE Advanced 2023 Paper 1 Online
JEE Advanced 2022 Paper 2 Online
JEE Advanced 2022 Paper 1 Online
JEE Advanced 2021 Paper 2 Online
JEE Advanced 2021 Paper 1 Online
JEE Advanced 2020 Paper 2 Offline
JEE Advanced 2020 Paper 1 Offline
JEE Advanced 2019 Paper 2 Offline
JEE Advanced 2019 Paper 1 Offline
JEE Advanced 2018 Paper 2 Offline
JEE Advanced 2018 Paper 1 Offline
JEE Advanced 2017 Paper 2 Offline
JEE Advanced 2017 Paper 1 Offline
JEE Advanced 2016 Paper 2 Offline
JEE Advanced 2016 Paper 1 Offline
JEE Advanced 2015 Paper 2 Offline
JEE Advanced 2015 Paper 1 Offline
JEE Advanced 2014 Paper 2 Offline
JEE Advanced 2014 Paper 1 Offline
JEE Advanced 2013 Paper 2 Offline
JEE Advanced 2013 Paper 1 Offline
IIT-JEE 2012 Paper 2 Offline
IIT-JEE 2012 Paper 1 Offline
IIT-JEE 2011 Paper 1 Offline
IIT-JEE 2011 Paper 2 Offline
IIT-JEE 2010 Paper 1 Offline
IIT-JEE 2010 Paper 2 Offline
IIT-JEE 2009 Paper 2 Offline
IIT-JEE 2009 Paper 1 Offline
IIT-JEE 2008 Paper 2 Offline
IIT-JEE 2008 Paper 1 Offline
IIT-JEE 2007
IIT-JEE 2007 Paper 2 Offline
IIT-JEE 2006 Screening
IIT-JEE 2006
IIT-JEE 2005 Screening
IIT-JEE 2005
IIT-JEE 2004
IIT-JEE 2004 Screening
IIT-JEE 2003
IIT-JEE 2003 Screening
IIT-JEE 2002 Screening
IIT-JEE 2002
IIT-JEE 2001
IIT-JEE 2001 Screening
IIT-JEE 2000 Screening
IIT-JEE 2000
IIT-JEE 1999 Screening
IIT-JEE 1999
IIT-JEE 1998
IIT-JEE 1998 Screening
IIT-JEE 1997
IIT-JEE 1996
IIT-JEE 1995
IIT-JEE 1995 Screening
IIT-JEE 1994
IIT-JEE 1993
IIT-JEE 1992
IIT-JEE 1991
IIT-JEE 1990
IIT-JEE 1989
IIT-JEE 1988
IIT-JEE 1987
IIT-JEE 1986
IIT-JEE 1985
IIT-JEE 1984
IIT-JEE 1983
IIT-JEE 1982
IIT-JEE 1981
IIT-JEE 1980
IIT-JEE 1979
IIT-JEE 1978
JEE Advanced
Papers
2020
2019
2018
2017
2016
1997
1996
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978