1
GATE ECE 2016 Set 1
MCQ (Single Correct Answer)
+2
-0.6
The electric field of a uniform plane wave travelling along the negative $$z$$ direction is given by the following equation: $$$\overrightarrow E {}_w^i = \left( {{{\widehat a}_{_x}} + j{{\widehat a}_{_y}}} \right){E_0}{e^{jkz}}$$$

This wave is incident upon a receiving antenna placed at the origin and whose radiated electric field towards the incident wave is given by the following equation:

$$${\overrightarrow E _{_a}} = \left( {{{\widehat a}_{_x}} + 2{{\widehat a}_{_y}}} \right){E_1}{1 \over r}{e^{ - jkr}}$$$

The polarization of the incident wave, the polarization of the antenna and losses due to the polarization mismatch are, respectively,

A
Linear, Circular (clockwise), $$−5dB$$
B
Circular (clockwise), Linear, $$−5dB$$
C
Circular (clockwise), Linear, $$−3dB$$
D
Circular (anti clockwise), Linear, $$−3dB$$
2
GATE ECE 2016 Set 1
MCQ (Single Correct Answer)
+1
-0.3
The propagation constant of a lossy transmission line is (2 + j5) $${m^{ - 1}}$$ and its characteristic impedance is (50 + j0) $$\Omega $$ at $$\omega = \,{10^6}\,rad\,{S^{ - 1}}$$. The values of the line constants L, C, R, G are, respectively,
A
$$\matrix{ {L = \,200\,\mu H/\,m,\,C = 0.1\,\,\mu F/\,m,\,} \cr {R = 50\,\,\Omega /m,\,G = 0.02\,S/m,} \cr } $$
B
$${\matrix{ {L = \,250\,\mu H/\,m,\,C = 0.1\,\,\mu F/\,m,\,} \cr {R = 100\,\,\Omega /m,\,G = 0.04\,S/m,} \cr } }$$
C
$${\matrix{ {L = \,200\,\mu H/\,m,\,C = 0.2\,\,\mu F/\,m,\,} \cr {R = 100\,\,\Omega /m,\,G = 0.02\,S/m,} \cr } }$$
D
$${\matrix{ {L = \,250\,\mu H/\,m,\,C = 0.2\,\,\mu F/\,m,\,} \cr {R = 50\,\,\Omega /m,\,G = 0.04\,S/m,} \cr } }$$
3
GATE ECE 2016 Set 1
MCQ (Single Correct Answer)
+2
-0.6
An antenna pointing in a certain direction has a noise temperature of $$50K$$. The ambient temperature is $$290K$$. The antenna is connected to a pre-amplifier that has a noise figure of 2 dB and an available gain of 40 dB over an effective bandwidth of $$12$$ $$MHz$$. The effective input noise temperature $${T_e}$$ for the amplifier and the noise power $${P_{ao}}$$ at the output of the preamplifier, respectively, are
A
$${T_e} = 169.36K$$ and $${P_{ao}} = 3.73 \times {10^{ - 10}}\,\,\,W$$
B
$${T_e} = 170.8K$$ and $${P_{ao}} = 4.56 \times {10^{ - 10}}\,\,\,W$$
C
$${T_e} = 182.5K$$ and $${P_{ao}} = 3.85 \times {10^{ - 10}}\,\,\,W$$
D
$${T_e} = 160.62K$$ and $${P_{ao}} = 4.6 \times {10^{ - 10}}\,\,\,W$$
4
GATE ECE 2016 Set 1
Numerical
+2
-0
Two lossless X-band horn antennas are separated by a distance of $$200\lambda $$. The amplitude reflection coefficients at the terminals of the transmitting and receiving antennas are $$0.15$$ and $$0.18$$, respectively. The maximum directivities of the transmitting and receiving antennas (over the isotropic antenna) are $$18$$ $$dB$$ and $$22$$ $$dB$$, respectively. Assuming that the input power in the lossless transmission line connected to the antenna is $$2$$ $$W$$, and that the antennas are perfectly aligned and polarization matched, the power ( in mW) delivered to the load at the receiver is ________ .
Your input ____
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12