1
GATE ECE 2015 Set 2
MCQ (Single Correct Answer)
+2
-0.6
The output of a standrad second-order system for a unit step input is given as $$y(t) = 1 - {2 \over {\sqrt 3 }}{e^{ - t}}\cos \left( {\sqrt 3 t - {\pi \over 6}} \right)$$.

The transfer function of the system is

A
$${2 \over {(s + 2)(s + \sqrt 3) }}$$
B
$${1 \over {{s^2} + 2s + 1}}$$
C
$${3 \over {{s^2} + 2s + 3}}$$
D
$${3 \over {{s^2} + 2s + 4}}$$
2
GATE ECE 2015 Set 2
MCQ (Single Correct Answer)
+2
-0.6
Input x(t) and output y(t) of an LTI system are related by the differential equation y"(t) - y'(t) - 6y(t) = x(t). If the system is neither causal nor stable, the imulse response h(t) of the system is
A
$${1 \over 5}{e^{3t}}u( - t) + {1 \over 5}{e^{ - 2t}}u( - t)$$
B
$${{ - 1} \over 5}{e^{3t}}u( - t) + {1 \over 5}{e^{ - 2t}}u( - t)$$
C
$${1 \over 5}{e^{3t}}u( - t) + {1 \over 5}{e^{ - 2t}}u(t)$$
D
$${{ - 1} \over 5}{e^{3t}}u( - t) - {1 \over 5}{e^{ - 2t}}u(t)$$
3
GATE ECE 2015 Set 2
Numerical
+2
-0
The value of the integral $$\int_{ - \infty }^\infty {12\,\cos (2\pi )\,{{\sin (4\pi t)} \over {4\pi t}}\,dt\,} $$ is
Your input ____
4
GATE ECE 2015 Set 2
MCQ (Single Correct Answer)
+1
-0.3
The signal $$\cos \left( {10\pi t + {\pi \over 4}} \right)$$ is ideally sampled at a sampling frequency of 15 Hz. The sampled signal is passed through a filter with impulse response $$\,\left( {{{\sin \left( {\pi t} \right)} \over {\pi t}}} \right)\,\cos \left( {40\pi t - {\pi \over 2}} \right).$$ The filter output is
A
$${{15} \over 2}\cos \left( {40\pi t - {\pi \over 4}} \right)$$
B
$${{15} \over 2}\left( {{{\sin \left( {\pi t} \right)} \over {\pi t}}} \right)\cos \left( {10\pi t + {\pi \over 4}} \right)$$
C
$${{15} \over 2}\cos \left( {10\pi t - {\pi \over 4}} \right)$$
D
$${{15} \over 2}\left( {{{\sin \left( {\pi t} \right)} \over {\pi t}}} \right)\cos \left( {40\pi t - {\pi \over 2}} \right)$$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12