1
GATE ECE 2015 Set 2
Numerical
+2
-0
Let x(t) = a s(t) +s(-t) with s(t) = $$\beta {e^{ - 4t}}u\left( t \right)$$, where u(t) is unit step function. If the bilateral Laplace transform of x(t) is $$$X\left( S \right)\, = {{16} \over {{S^2} - 16}} - 4 < {\mathop{\rm Re}\nolimits} \left\{ s \right\} < 4;$$$

Then the value of β is ______.

Your input ____
2
GATE ECE 2015 Set 2
Numerical
+1
-0
Two casual discrete-time signals $$x\left[ n \right]$$ and $$y\left[ n \right]$$ =$$\sum\limits_{m = 0}^n x \left[ m \right]$$. If the z-transform of y$$\left[ n \right]$$=$${2 \over {z{{(z - 1)}^2}}}$$ , the value of $$x\left[ 2 \right]$$ is _____________________
Your input ____
3
GATE ECE 2015 Set 2
MCQ (Single Correct Answer)
+2
-0.6
The output of a standrad second-order system for a unit step input is given as $$y(t) = 1 - {2 \over {\sqrt 3 }}{e^{ - t}}\cos \left( {\sqrt 3 t - {\pi \over 6}} \right)$$.

The transfer function of the system is

A
$${2 \over {(s + 2)(s + \sqrt 3) }}$$
B
$${1 \over {{s^2} + 2s + 1}}$$
C
$${3 \over {{s^2} + 2s + 3}}$$
D
$${3 \over {{s^2} + 2s + 4}}$$
4
GATE ECE 2015 Set 2
MCQ (Single Correct Answer)
+2
-0.6
Input x(t) and output y(t) of an LTI system are related by the differential equation y"(t) - y'(t) - 6y(t) = x(t). If the system is neither causal nor stable, the imulse response h(t) of the system is
A
$${1 \over 5}{e^{3t}}u( - t) + {1 \over 5}{e^{ - 2t}}u( - t)$$
B
$${{ - 1} \over 5}{e^{3t}}u( - t) + {1 \over 5}{e^{ - 2t}}u( - t)$$
C
$${1 \over 5}{e^{3t}}u( - t) + {1 \over 5}{e^{ - 2t}}u(t)$$
D
$${{ - 1} \over 5}{e^{3t}}u( - t) - {1 \over 5}{e^{ - 2t}}u(t)$$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12